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Abstract

	 Model	predictive	control	(MPC)	has	been	one	of	 the	most	promising	control	strategies	 in	 industrial	

processes	for	decades.	Due	to	its	remarkable	advantages,	it	has	been	extended	to	many	areas	of	robotic	research,	

especially	motion	control.	Therefore,	the	goal	of	this	paper	is	to	review	motion	control	of	wheeled	mobile	robots	

(WMRs)	using	MPC.	Principles	as	well	as	key	issues	in	real-time	implementations	are	first	addressed.	We	then	

update	the	current	literature	of	MPC	for	motion	control.	We	also	classify	publications	by	using	three	criteria,	i.e.,	

MPC	models,	robot	kinematic	models,	and	basic	motion	tasks.	MPC	models	categorized	here	include	nonlinear	

MPC,	linear	MPC,	neural	network	MPC,	and	generalized	predictive	control	(GPC),	while	robot	kinematic	models	

we	focus	on	consist	of	unicycle-type	vehicles,	car-like	vehicles,	and	omnidirectional	vehicles.	Basic	motion	tasks,	

in	general,	are	classified	into	three	groups,	i.e.,	trajectory	tracking,	path	following,	and	point	stabilization.	To	show	

that	MPC	strategies	are	capable	of	real-time	implementations,	some	experimental	scenarios	from	our	previous	

work	are	given.	We	also	conclude	by	identifying	some	future	research	directions.
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1. Introduction

	 Robots	have	become	increasingly	more	important		

in	human	daily	lives	in	the	last	decade	and	apparently	

the	number	of	robots	will	increase	and	get	more	involved	

in	the	human	society	in	the	near	future	(1).	Real-world	

applications	employing	robots	have	already	shown	the	

effectiveness	 and	 usefulness	 of	 robots,	 especially	 in	

industry.	However,	many	unsolved	problems	still	exist	

in	many	robotic	research	areas.

	 In	general,	basic	tasks	in	robotic	research	are	

mapping,	controlling,	planning	and	localizing	(2).	Usually,		

a	 robot	creates	a	map	of	 the	environment.	Using	 this	

map,	it	can	localize	itself.	Then	it	plans	the	reference	if	

it	wants	to	travel.	The	controller	is	designed	to	move	it	

to	the	target.	However,	accomplishing	those	missions	

is	not	an	easy	task.	In	this	paper,	we	address	only	the	

problem	of	motion	 control	 of	wheeled	mobile	 robots	

(WMRs).	Motion	control	of	WMRs	has	been,	and	still	is,	

the	subject	of	numerous	research	studies.	Many	nonlinear	
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techniques	 have	been	proposed	 in	 the	 literature,	 e.g.,	

dynamic	feedback	linearization	(3),	sliding	mode	control	

(4),	backstepping	 techniques	 (5),	 etc.,	 to	name	 some.	

For	this	paper,	the	goal	is	to	present	a	survey	of	model	

predictive	control	(MPC)	applied	to	WMRs.	Although	

MPC	is	not	a	new	control	method,	works	dealing	with	

MPC	of	WMRs	are	sparse.

	 Model	predictive	control	(MPC),	also	referred	

to	as	receding	horizon	control	(RHC)	and	moving	horizon		

optimal	 control,	 has	 been	widely	 adopted	 in	 process	

control	industry	for	decades	because	control	objectives	

and	operating	constraints	can	be	integrated	explicitly	in	

the	optimization	problem	that	is	solved	at	each	instant.	

Many	successful	MPC	applications	have	been	reported	

in	the	last	three	decades	(6,	7).	Although	it	is	traditionally	

applied	to	plants	with	dynamics	slow	enough	to	permit	

computations	 between	 samples,	 recently,	 due	 to	 the	

combination	of	advanced	research	results	and	the	advent	

of	faster	computers,	it	has	become	possible	to	extend	the	

implementation	of	MPC	design	to	systems	governed	by	

faster	dynamics,	including	WMRs.

	 The	rest	of	the	paper	is	structured	as	follows:	in	

Section	2,	principles	and	relevant	literature	of	MPC	are	

introduced.	Major	practical	issues	of	MPC	are	discussed		

in	Section	3.	The	current	literature	of	MPC	for	motion		

control	 is	 updated	 and	 classified	 into	 three	 basic		

motion	 tasks,	 i.e.,	 trajectory	 tracking,	path	 following,	

and	point	stabilization,	in	Section	4.	Section	5	illustrates		

experimental	 scenarios	 from	 our	 previous	 work,	

where	MPC	techniques	were	implemented	in	real-time		

applications.	We	 also	 suggest	 some	 future	 research	

directions	in	Section	6	and	finally,	we	close	our	review	

with	some	conclusions	in	Section	7.

2. Principles and Formulation

	 The	conceptual	structure	of	MPC	is	illustrated	

in	Figure	1.	As	its	name	suggests,	an	MPC	algorithm	

employs	an	explicit	model	of	the	plant	to	be	controlled	

which	 is	 used	 to	 predict	 the	 future	 output	 behavior.	

This	prediction	capability	allows	computing	a	sequence	

of	manipulated	variable	adjustments	in	order	to	solve	

optimal	control	problems	in	real	time,	where	the	future	

behavior	of	a	plant	is	optimized	over	a	future	horizon,	

possibly	subject	to	constraints	on	the	manipulated	inputs	

and	outputs	 (8-12).	The	 result	 of	 the	 optimization	 is		

applied	according	to	a	receding	horizon	philosophy:	At	

time	t	only	the	first	input	of	the	optimal	command	sequence	

is	actually	applied	to	the	plant.	The	remaining	optimal	

inputs	are	discarded,	and	a	new	optimal	control	problem	

is	solved	at	time	t+d,	where	d	is	the	sampling	period.	
As	new	measurements	are	collected	from	the	plant	at	

each	time	t,	the	receding	horizon	mechanism	provides	

the	controller	with	the	desired	feedback	characteristics.
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Figure 1.	Principle	of	model	predictive	control	(8).

	 When	 the	model	 is	 linear,	 the	 optimization	

problem	 is	 a	 convex	 quadratic	 programming	 (QP)		

problem	if	the	performance	index	is	expressed	through	

the	 l
2
-norm,	 or	 a	 linear	 programming	 problem	 if	

expressed	through	the	l
1
/l

∞
-norm.	It	has	a	unique,	global	

minimum	which	can	be	quickly	and	reliably	computed	

numerically	in	a	constrained	case.	In	an	unconstrained	

case	the	solution	can	be	computed	analytically	as	a	linear	

feedback	control	law.	If	a	process	model	is	in	the	form	of	

a	discrete	transfer	function	or	equivalently	a	difference		

equation	 (e.g.,	 an	 ARX-type	model),	 generalized		

predictive	control	 (GPC)	(13,	14)	can	be	derived.	By	

now,	 important	 issues	of	 linear	MPC	 theory	are	well	

addressed	(6,	15).	However,	many	systems	are	inherently		

nonlinear	 and	 linear	MPC	 is	 inadequate	 for	 highly		

nonlinear	systems.	Therefore,	nonlinear	models	must	be	

used	(8).	However,	the	optimization	problem	is	certainly	

not	linear	or	quadratic,	it	is	generally	a	nonconvex	when	

the	model	is	nonlinear.	For	such	problems,	there	are	no	

sufficiently	 fast	 and	 reliable	 numerical	 optimization	

procedures.	Therefore,	many	attempts	have	been	made	to	

construct	simplified	(and	generally	suboptimal)	nonlinear		

MPC	 algorithms	 avoiding	 full	 online	 nonlinear		

optimization.	One	possibility	is	to	use	model	linearization		

or	multiple	linear	models,	in	which	only	a	QP	problem	

is	 solved	online	 (6).	There	 are	 also	many	designs	 of	

predictive	algorithms	based	on	nonlinear	optimization	

and	also	using	neural	network	techniques.

	 A	nonlinear	system	is	normally	described	by	

the	following	nonlinear	differential	equation:

	

	 	 	 (1)

	 where	 	 	 are	 the	 n	

dimensional	state	vector	and	the	m	dimensional	input	

vector	of	the	system,	respectively.	 	and	 	
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denote	the	set	of	feasible	states	and	inputs	of	the	system,	

respectively.	 In	 nonlinear	MPC	 (NMPC),	 the	 input	

applied	to	the	system	is	usually	given	by	the	solution		

of	the	following	finite	horizon	open-loop	optimal	control	

problem,	which	is	solved	at	every	sampling	instant:

	 	 (2)

	 	 (3)

	 where	 	 The	 bar	

denotes	 an	 internal	 controller	 variable.	T
p
	 represents	

the	length	of	the	prediction	horizon	or	output	horizon,	

and	T
c
	denotes	the	length	of	the	control	horizon	or	input	

horizon	 .	When	T
p
	=	∞,	we	refer	to	this	as	the	

infinite	horizon	problem,	and	similarly,	when	T
p
	is	finite,	

as	a	finite	horizon	problem.		 		is	the	terminal	

penalty	and	W	is	the	terminal	region.	The	deviation	from	

the	desired	values	is	weighted	by	the	positive	definite	

matrices	Q	and	R.

	 A	standard	MPC	scheme	works	as	follows	(8):

	 1)	 Obtain	measurements/estimates	 of	 the	

states	of	the	system	at	time	instant	t.

	 2)	 Calculate	an	optimal	input	series		

by	minimizing	the	desired	cost	function	over	the	predictive		

horizon	 in	 the	 future	 using	 the	 system	model,	 the	

generated	predictive	 state	 sequence	 	 	 from	

	should	contain	 the	 terminal	 state	 		

that	falls	in	the	required	terminal	state	region.

	 3)	 Implement	the	first	part	of	the	optimal	input	

series	 	until	the	new	measurement/estimates	of	the	

states	are	available.

	 4)	 Continue	with	1)	at	the	next	time	instant	t 

= t + d.

	 As	mentioned	before	that	MPC	has	been	one	

of	the	most	promising	control	strategies.	The	reason	is	

due	 to	 the	 following	 remarkable	 advantages	 of	MPC	

over	conventional	control	schemes:

	 •	 its	ability	to	incorporate	generic	models,	

linear	 and	 nonlinear,	 and	 constraints	 in	 the	 optimal	

control	problem;

	 •	 its	 formulation	 that	 can	 be	 extended	 to	

handle	multiple-variable,	nonlinear,	time-varying	plants	

in	a	single	control	formulation;

	 •	 its	 ability	 to	 redefine	 cost	 functions	 and	

constraints	as	needed	to	reflect	changes	in	the	system	

and/or	the	environment;

	 •	 its	ability	to	use	future	values	of	references	

when	 they	 are	 available,	 allowing	MPC	 to	 improve	

performance	in	navigation;

	 •	 its	ability	to	tune	parameters	that	are	di-

rectly	related	to	a	cost	function.

3. Practical Issues of Nonlinear MPC

	 In	 this	 section,	we	 review	 some	 practical		

issues,	i.e.,	feasibility,	stability	and	real-time	optimization.		

They	are	some	of	the	most	important	aspects	in	NMPC	

implementations.

	 3.1 Feasibility

	 Typically	one	assumes	feasibility	at	time	t	=	0	

and	chooses	the	cost	function	and	the	stability	constraints	

such	that	feasibility	is	preserved	at	the	following	time	

steps.	This	can	be	done,	for	example,	by	ensuring	that	

the	shifted	optimal	sequence	 		

is	 feasible	 at	 time	 t+d.	 Furthermore,	 typically	 the	
constraints	in	[3]	which	involve	state	components	are	

treated	as	soft	constraints,	for	instance	by	adding	the	slack		

variable	e,	while	input	constraints	in	[3]	are	maintained	
as	 hard	 because	 they	 come	 from	 actuator	 saturation	

and/or	 physical,	 safety	 or	 economical	 requirements.	

Relaxing	 the	 state	 constraints	 removes	 the	 feasibility	

problem.	Keeping	them	tight	does	not	make	sense	from	a	

practical	point	of	view	because	of	the	presence	of	noise,	

disturbances,	and	numerical	errors.
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	 3.2 Stability

	 The	next	major	concern	in	the	use	of	MPC	is	

that	whether	such	an	open-loop	control	can	guarantee	

system	stability.	It	is	shown	that	an	infinite	predictive	

control	horizon	can	guarantee	stability	of	a	system,	but	

the	infinite	predictive	horizon	may	not	be	feasible	for	

a	 nonlinear	 system	 in	 practice	 (8).	Mayne	 et	 al.	 (10)	

have	presented	the	essential	principles	for	the	stability	

of	MPC	of	 constrained	 dynamical	 systems.	Different	

approaches	 to	 attain	 closed-loop	 stability	 using	finite	

horizon	lengths	exist.	We	review	some	of	the	popular	

techniques	proposed	in	the	literature	to	enforce	stability.	

For	reasons	of	a	simple	presentation,	no	detailed	proofs	

are	given.

	 Most	recent	MPC	controllers	use	a	terminal	

cost	and	enforce	a	terminal	constraint	set.	The	following	

stability	theorem	given	in	(8)	provides	a	way	to	find	the	

suitable	terminal	penalty	and	constraints.

	 Theorem	1:	Suppose

	 1)	 	is	compact,	 	is	connected	

and	the	origin	is	contained	in	the	interior	of		 .

	 2)	 The	 vector	 field	 	 is	

continuous	in	 	and	locally	Lipschitz	in	 	and	satisfies

.

	 3)	 	 i s 	 cont inuous 	 in	

all	 arguments	 with	 	 and	

.

	 4)	 The	 terminal	 penalty	 	 is	

continuous	with	 	and	that	the	terminal	region	W 

is	given	by	 	for	some	

such	that	 .

	 5)	 There	exists	a	continuous	local	control	law		

	such	that		 	for	all	 	and

	 (4)

	 6)	 The	NMPC	 open-loop	 optimal	 control	

problem	[2]	has	a	feasible	solution	for	t	=	0.

	 Then	for	any	sampling	time	 ,	the	

nominal	 closed-loop	 system	 is	 asymptotically	 stable	

and	the	region	of	attraction	is	given	by	the	set	of	states	

for	which	the	open-loop	optimal	control	problem	has	a	

feasible	solution.

	 Many	NMPC	 schemes	 follow	 this	 theorem	

to	guarantee	stability.	Generally,	they	differ	in	how	the	

terminal	region	and	terminal	penalty	terms	are	obtained.	

Basically,	the	terminal	penalty	and	the	terminal	region	

are	 determined	 off-line	 such	 that	 the	 cost	 function	

gives	an	upper	bound	on	the	infinite	horizon	cost	and		

guarantees	a	decrease	in	the	value	function	as	the	horizon	

recedes	in	time.	Various	ways	to	determine	a	suitable		

terminal	penalty	term	and	terminal	region	exist.	Examples		

are	the	use	of	a	control	Lyapunov	function	as	a	terminal	

penalty	(16,	17)	for	the	system	in	the	terminal	region,	

enforcing	a	decrease	in	 the	value	function,	or	 the	use	

of	a	local	nonlinear	or	linear	control	law	to	determine	a	

suitable	terminal	penalty	and	a	terminal	region	(18-20).	

The	terminal	region	constraint	is	added	to	enforce	that	if	

the	open-loop	optimal	control	problem	is	feasible	once,	

that	it	will	remain	feasible,	and	to	allow	establishing	the	

decrease	using	the	terminal	penalty	(see	(10,	18,	19,	21)	

for	more	details).	In	general,	it	is	not	necessary	to	find	

always	an	optimal	solution	in	order	to	guarantee	stability		

(16,	 19,	 22).	Only	 a	 feasible	 solution	 resulting	 in	 a		

decrease	in	the	value	function	is	necessary.	This	can	be	

utilized	to	decrease	the	necessary	online	solution	time	(8).	

	 3.3 Optimization Solvers

	 Although	 stability	 results	 for	NMPC	have	

been	well	established,	 it	 is	not	applicable	 in	practical		

implementation.	 Since	 a	 constrained	 nonlinear		

optimization	problem	has	to	be	solved	online,	the	heavy	

online	computational	burden	causes	two	important	issues	

in	implementation	of	NMPC	(8).	One	is	the	computational		

delay.	The	other	is	the	global	optimization	solution	which	

cannot	 be	 guaranteed	 in	 each	optimization	procedure	
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since	it	is,	in	general,	a	nonconvex,	constrained	nonlinear	

optimization	problem.	

	 In	practice,	linear	models	are	most	often	used	

and	the	resulting	optimizations	are	linear	or	quadratic	

programs.	In	the	nonlinear	constrained	optimization,	the	

objective	criterion	is	optimized	directly	by	discretizing	

the	original	problem	to	finite	dimensional	approximation		

(8).	 The	 discretized	 version	 of	 the	 optimal	 control		

problem	(OCP)	can	be	solved	with	well	known	nonlinear		

programming	 (NLP)	 algorithms,	 such	 as	 sequence		

quadratic	programming	(SQP)	(23,	24)	or	interior-point	

(IP)	methods	 (25).	 For	more	 details	 on	 optimization	

solvers,	the	reader	is	referred	to	(8,	23,	26).

4. Motion Control Using MPC

	 In	Section	2	and	3,	an	overview	of	the	theoretical		

and	practical	aspects	of	MPC	has	shown	some	of	 the	

challenging	issues.	Although	MPC	is	suitable	for	low-

process	systems,	such	as	chemical	factories,	with	new	

optimization	solvers,	more	powerful	computers	and	more	

advanced	MPC	frameworks,	MPC	can	be	implemented	

in	real-time	applications,	as	seen	in	this	section.

	 Recently,	MPC	 strategies	 for	 path	 planning	

and	local	navigation	have	become	increasingly	popular	

in	 robotic	 research,	but	 they	are	beyond	 the	scope	of	

this	paper.	In	this	paper,	we	focus	on	three	criteria	used	

to	 classify	 publications	 of	motion	 control,	 i.e.,	MPC	

models,	robot	kinematic	models,	and	basic	motion	tasks,	

as	 summarized	 in	Table	 1.	 Since	 an	MPC	algorithm		

employs	an	explicit	model	of	the	plant	(the	plant	here	

is	 a	mobile	 robot)	 to	 be	 controlled	which	 is	 used	 to	

predict	 the	 future	 output	 behavior,	 we	 review	 the	

three	most	popular	kinematic	models	in	the	literature,	

i.e.,	 unicycle-type	 vehicles,	 car-like	 vehicles,	 and		

omnidirectional	vehicles	(27).

	 A	unicycle-type	vehicle,	shown	in	Figure	2(a),	

has	two	identical	parallel	rear	wheels,	which	are	controlled		

by	two	independent	motors	on	the	same	axle	and	one	

caster	wheel.	It	is	assumed	that	the	center	of	mass	of	the		

mobile	robot	is	located	in	the	middle	of	the	axis	connecting		

the	rear	wheels.	Based	on	this	wheel	configuration,	the	

following	kinematic	model	of	a	unicycle-type	mobile	

robot	can	be	obtained:

	 		 	 (5)

	 where	(x, y)	indicates	the	position	of	the	robot	

center	in	the	world	frame	(X
w
, Y

w
)	and	θ	is	the	heading	

angle	of	the	robot.	v	and	w	stand	for	the	linear	and	angular	

velocities,	 respectively.	 In	 (29),	 it	 is	 shown	 that	 the	

nonlinear,	nonholonomic	system	[5]	is	fully	controllable,	

i.e.,	it	can	be	steered	from	any	initial	state	to	any	final	

state	in	finite	time	by	using	finite	inputs.	Nonholonomic	

constraints	mean	the	perfect	rolling	constraints	without	

longitudinal	or	lateral	slipping	of	the	wheels.	In	the	case	

of	a	trajectory-tracking	controller,	a	linear	time-varying	

system	is	obtained	by	approximate	linearization	around	

the	trajectory.	The	linearization	obtained	is	shown	to	be	

controllable	as	long	as	the	trajectory	does	not	come	to	

stop,	which	implies	that	the	system	can	be	asymptotically		

stabilized	 by	 smooth	 linear	 or	 nonlinear	 feedback.		

Furthermore,	due	to	Brockett’s	theorem	(29),	the	asymptotic		

stabilization	of	a	fixed	point,	where	a	position	must	be	

reached	with	a	given	orientation,	is	mainly	achieved	via	

discontinuous	feedback	and/or	continuous	time-varying	

feedback.	An	extensive	review	of	nonholonomic	control	

problems	can	be	found	in	(30).
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Figure 2.	(a)	A	unicycle	mobile	robot	(12	cm	diameter),	and	(b)	coordinate	frames	of	a	unicycle	mobile	robot	(28).

	 A	car-like	vehicle	is	shown	in	Figure	3(a).	The	

robot	is	a	rear-wheel-drive	vehicle	and	its	front	wheels	

are	used	for	steering.	Based	on	Figure	3(b),	the	kinematic	

model	is	hence	described	as	follows:

	 	 	 	 (6)

	 where	 (x, y)	 are	 the	world	 reference	 frame	

coordinates,	v	 is	 the	 forward	 velocity	 at	 the	middle	

of	the	front	axis,	θ	is	yaw	angle,	ϕ	is	the	front-wheel	

steering	angle,	and	l	is	the	distance	between	the	wheels.	

The	car-like	robot	is	also	a	nonholonomic	vehicle	and	it	

has	a	mechanical	constraint,	which	imposes	a	maximum		

curvature	 (or	minimum	 turning	 radius)	 of	 the	 path		

executed	by	the	robot.	Furthermore,	for	such	a	vehicle	to	

move	sideways	requires	a	parking	maneuver	consisting	

of	repeated	changes	in	direction	forward	and	backward.	

However,	the	limited	maneuverability	of	car-like	steering		

has	an	important	advantage,	i.e.,	its	directionality	and	

steering	 geometry	 provide	 it	with	 very	 good	 lateral	

stability	in	high-speed	turns	(27).

Figure 3.	(a)	A	car-like	mobile	robot,	and	(b)	coordinate	frames	of	a	car-like	mobile	robot.
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	 An	omnidirectional	vehicle,	shown	in	Figure	

4(a),	 becomes	 increasingly	 popular	 in	mobile	 robot	

applications,	since	they	have	some	distinct	advantages	

over	 nonholonomic	mobile	 robots.	 They	 have	 a	 full		

omnidirectionality	with	simultaneously	and	independently		

controlled	rotational	and	translational	motion	capabilities,		

i.e.,	 they	 can	move	 at	 each	 instant	 in	 any	 direction	

without	reorientation	(31).	The	omnidirectional	motion		

is	 enabled	 via	 special	wheels	 used	 in	mobile	 robot	

design.	One	of	the	most	popular	arrangements	utilizes	

so-called	Swedish	wheels	mounted	on	the	periphery	of	

the	chassis,	thus	allowing	freedom	of	motion.	Based	on	

the	basic	architecture	of	the	wheeled	platform	illustrated	

in	Figure	4(b),	the	velocity	component	with	respect	to	

the	world	frame	is	obtained	by

	 	 (7)

	 where	 the	point	 (x, y)	 is	 the	position	of	 the	

center	of	 the	robot	on	the	axes	(X
w
, Y

w
)	and	θ	 is	 the	

angular	position	with	respect	to	the	axis	X
w
.	The	input	

signals	are	given	by	u, v, ω	with	u,	v	being	two	orthogonal	

velocity	vectors,	where	u	is	aligned	with	the	reference	

axis	 of	 the	 robot.	ω corresponds	 to	 the	 rotational	
velocity	of	the	robot.	

Figure 4.	(a)	The	structure	of	an	omnidirectional	mobile	robot	with	Swedish	wheels	that	contain	a	series	of	

rollers	attached	to	its	circumference,	and	(b)	coordinate	frames	of	an	omnidirectional	mobile	robot	(32).

	 These	 robot	 kinematic	models	 can	 be	 used	

directly	with	MPC,	 called	 nonlinear	MPC	 (NMPC).	

However,	we	can	reduce	the	complexity	of	the	nonlinear	

model	by	the	following	three	possibilities:	

	 •	 Linearization	methods	 to	 linearize	 the	

nonlinear	model	into	the	linearized	time-varying	model;

	 •	 System	identification	techniques	for	linear	

GPC	to	approximate	the	nonlinear	system;

	 •	 Neural	network	approaches	to	form	neural	

network	models.

	 The	following	three	subsections	are	classified	

according	to	motion	control	tasks	treated	in	the	literature	

(2).	Table	1	provides	a	summary	of	publications	of	motion		

control	according	to	our	three	classification	criteria.
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	 4.1 Trajectory Tracking

	 Typically,	 trajectory	 tracking	 problems	 for	

mobile	robots	are	solved	by	designing	control	laws	that	

make	the	robots	track	given	time	varying	trajectories,	

i.e.,	 trajectories	 that	specify	 the	 time	evolution	of	 the	

position,	orientation,	as	well	as	the	linear	and	angular	

velocities	 (59).	However,	 this	 approach	 suffers	 from	

the	drawback	that	usually	the	robots’	dynamics	exhibit	

complex	nonlinear	terms	and	significant	uncertainties,	

which	make	the	task	of	computing	a	feasible	trajectory	

difficult.	Also,	 in	 the	presence	of	 tracking	errors,	 the	

controller	attempts	to	make	the	outputs	catch	up	with	

the	time-parameterized	desired	outputs.	This	may	lead	to	

too	large	control	signals.	One	approach	to	eliminate	such	

problems	is	to	use	a	path	following	controller	instead	of	

a	tracking	controller,	as	explained	in	the	next	subsection.

	 In	 the	 field	 of	 mobile	 robotics,	 MPC		

approaches	 to	 trajectory	 tracking	 seem	 to	 be	 very	

promising	 because	 the	 reference	 trajectory	 is	 known	

beforehand.	In	the	literature,	most	MPC	controllers	use	a	

linear	model	of	mobile	robot	kinematics	to	predict	future	

system	outputs.	Lages	and	Alves	(33)	used	a	successive	

linearization	approach,	yielding	a	linear,	time-varying	

description	of	the	system	that	can	be	controlled	through	

linear	MPC.	Then,	 the	 optimization	 problem	 can	 be	

transformed	 into	 a	QP	problem	and	 easily	 solved	by	

numerically	 robust	 solvers,	 leading	 to	 global	 optimal	

solutions	 at	 each	 sampling	 time.	An	MPC	 trajectory	

tracking	algorithm	with	a	robot	model	that	is	linearized	

around	 the	 reference	 trajectory	was	also	proposed	by	

Klancar	 and	Skrjanc	 (34).	Their	 analytic	 control	 law	

is	 explicitly	 obtained	without	 using	 any	optimization	

solver,	while	 the	 bounded	 velocity	 and	 acceleration	

constraints	are	considered	in	low-level	control.	Jiang	et	

al.	(35)	presented	a	tracking	method,	where	the	predictive	

control	is	used	to	predict	the	position	and	the	orientation	

of	the	robot	and	the	fuzzy	control	is	used	to	deal	with	

the	nonlinear	characteristics	of	the	system.

	 Seyr	and	Jakubek	(36)	solved	a	nonholonomic	

control	 problem	 consisting	 of	NMPC	 in	 conjunction	

with	kinematics	of	a	unicycle-type	mobile	robot	under	

consideration	 of	 side	 slip	 and	 tangential	wheel	 slip.	

Based	on	a	Gauss-Newton	algorithm,	predicted	future	

position	errors	are	minimized	by	numerical	computation		

of	 an	 optimal	 sequence	 of	 control	 inputs	 using		

pre-specified	shape	functions.	Hedjar	et	al.	(37)	presented	

a	finite-horizon	nonlinear	predictive	controller	using	the	

Taylor	approximation.	One	of	the	main	advantages	of	

their	control	schemes	is	that	they	do	not	require	on-line	

optimization	 and	 asymptotic	 tracking	 of	 the	 smooth	

reference	signal	is	guaranteed.	Gu	and	Hu	(38)	presented	

a	 stabilizing	model	 predictive	 controller	 for	 tracking		

control	of	a	nonholonomic	mobile	robot.	A	terminal-state	

region	and	its	corresponding	local	controller	are	developed		

to	 guarantee	 the	 stability	 of	 controlled	 systems.	The	

proposed	model	predictive	controller	 can	be	used	 for	

simultaneous	 tracking	 control	 and	 point	 stabilization	

problems.	Essen	and	Nijmeijer	(39)	developed	an	NMPC	

algorithm,	which	is	applied	to	both	problems	of	point	

stabilization	and	trajectory	tracking.	An	application	of	

their	NMPC	to	the	stabilization	of	a	kinematic	model	

of	 a	 unicycle-type	mobile	 robot	with	 input	 and	 state		

constraints	was	studied.	Xie	and	Fierro	(40)	proposed	a	

first-state	contractive	model	predictive	control	(FSC-MPC)		

algorithm	for	the	trajectory	tracking	and	point	stabilization		

problems	of	nonholonomic	mobile	robots.	Stability	of	

the	proposed	MPC	scheme	is	guaranteed	by	adding	a	

first-state	contractive	constraint.

	 Araujo	et	al.	(41)	presented	a	methodology	for	

state	feedback	MPC	synthesis	applied	to	the	trajectory		

tracking	 control	 problem	 of	 a	 three-wheeled		

omnidirectional	mobile	 robot.	 Closed	 loop	 system		

stability	is	guaranteed	by	deriving	LMI	constraints	for	

the	monotonicity	of	the	upper	bound	of	the	cost	function.	

Chen	 and	Li	 (42)	 enhanced	 computational	 efficiency	
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of	Neural	Network	Predictive	Control	 (NNPC)	using	

Particle	Swarm	Optimization	with	Controllable	Random	

Exploration	Velocity	(PSO-CREV)	for	searching	optimal	

solutions	so	that	NNPC	can	be	used	in	the	systems	with	

rapid	dynamics.	Pan	and	Wang	(43)	proposed	a	recurrent	

neural	network	 (RNN)	approach	 to	NMPC.	By	using	

decomposition,	the	original	optimization	associated	with	

NMPC	is	reformulated	as	a	QP	problem	with	unknown	

parameters.	To	solve	the	QP	problem,	an	improved	dual	

neural	network	with	less	complexity	is	applied.	Recently,	

Maurovic	et	al.	(44)	developed	an	explicit	MPC	scheme,	

where	the	solution	to	the	MPC	minimization	problem	

can	be	calculated	off-line	and	expressed	as	a	piecewise	

affine	function	of	 the	current	state	of	a	mobile	 robot,	

thus	 avoiding	 the	 need	 for	 online	minimization.	By	

obtaining	such	optimal	controller,	which	has	a	form	of	

a	look-up	table,	there	is	no	need	for	expensive	and	large	

computational	infrastructure.

	 4.2 Path Following

	 Path	following	has	recently	been	formulated	

to	replace	the	standard	trajectory	tracking	as	it	is	more	

suitable	for	certain	applications	(59).	As	illustrated	in	

(60),	with	path	following,	the	time	dependence	of	the	

problem	is	removed,	smoother	convergence	to	the	path	

is	achieved,	and	the	control	signals	are	less	likely	pushed	

into	saturation	when	compared	to	trajectory	tracking.

	 Path	 following	problems	 (59)	 are	 primarily	

concerned	with	design	of	control	laws	that	steer	an	object	

(robot	arm,	mobile	robot,	ship,	aircraft,	etc.)	to	reach	and	

to	follow	a	geometric	path,	i.e.,	a	manifold	parameterized	

by	a	continuous	scalar	s	(called	a	geometric	task),	while	

a	secondary	goal	is	to	force	the	object	moving	along	the	

path	to	satisfy	some	additional	dynamic	specifications		

(called	 a	 dynamic	 assignment	 task).	 This	 dynamic		

behavior	is	further	specified	via	time,	speed,	or	acceleration		

assignments	(60).	

	 Ollero	 and	Amidi	 (45)	 used	GPC	 to	 solve	

the	 path	 following	 problem	 to	 obtain	 an	 appropriate	

steering	angle	taking	into	account	the	vehicle	velocity.		

A	GPC	approach	using	a	Smith	predictor	to	cope	with	

an	 estimated	 system	 time	 delay	was	 presented	 by	

Normey-Rico	et	al.	(46).	In	(45,	46),	it	is	assumed	that	

the	control	acts	only	in	the	angular	velocity,	while	the	

linear	velocity	is	constant.	Vougioukas	(47)	presented	

a	 reactive	 path	 tracking	 controller	 based	 on	NMPC,	

along	with	an	iterative	gradient	descent	algorithm	for	its	

real-time	implementation.	In	the	presence	of	obstacles,	

the	controller	deviates	from	the	reference	trajectory	by	

incorporating	 into	 the	 optimization	 obstacle-distance	

information	from	range	sensors.	Conceicao	et	al.	(48)	

proposed	a	nonlinear	model	based	predictive	controller	

for	an	omnidirectional	mobile	robot.	The	optimization	

algorithms,	mainly	 the	methods	 based	 on	 conjugate	

gradients,	present	good	times	of	minimization	of	the	cost	

function,	allowing	its	use	in	the	predictive	controller.

	 Falcone	et	al.	(49)	presented	two	approaches	

with	different	computational	complexities	for	controlling	

an	active	front	steering	system	in	an	autonomous	vehicle.	

In	the	first	approach,	the	MPC	problem	is	formulated	by	

using	a	nonlinear	vehicle	model.	The	second	approach	is	

based	on	successive	online	linearization	of	the	vehicle	

model,	resulting	in	a	linear	time-varying	(LTV)	system.	

Bak	et	al.	(50)	proposed	a	fast	real-time	receding	horizon	

controller	with	velocity	constraints	to	avoid	excessive	

overshooting	and	to	have	time	to	decelerate	when	turning.		

The	 presented	 controller	 is	 based	 on	 a	 strategy	 that	

forecasts	the	turning	using	a	receding	horizon	approach	

where	the	controller	predicts	the	posture	of	the	robot	and	

together	with	knowledge	of	an	upcoming	inter	section		

compensates	 the	 control	 signals.	 Raffo	 et	 al.	 (51)	

proposed	 a	 controller	 architecture	 considering	 both	

kinematic	and	dynamic	control	in	a	cascade	structure.	

Two	different	MPCs	 are	 compared:	 1)	 a	 state	 space	
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formulation	based	on	the	linearized	kinematic	model	of	

the	error	between	the	real	vehicle	and	a	reference	vehicle	

and	2)	a	GPC	scheme	based	on	a	local	linear	model	and	

approximation	paths.	They	found	that	the	GPC	strategy	

presents	better	compromise	between	performance	and	

computational	complexity.

	 A	 neural	 network	 also	 helps	 to	 solve	 the	

optimization	problem.	Yang	 et	 al.	 (52)	 solved	 a	path	

following	problem	by	using	 a	 neural	 network	model	

of	a	car-like	robot	to	predict	the	future	vehicle	posture	

according	to	the	current	posture	and	control	variables.	

The	modeling	errors	are	corrected	by	an	on-line	learning	

algorithm.	Gomez-Ortega	and	Camacho	(53)	presented	

a	neural	network	approach	for	mobile	robot	dynamics,		

where	a	neutral	network	multilayer	perceptron	is	trained	

to	reproduce	NMPC	behaviors	in	a	supervised	manner.		

Unexpected	 static	 obstacles	 present	 in	 the	 robot		

environment	are	also	considered	in	their	implementation.	

Gu	and	Hu	(54)	presented	a	path	tracking	scheme	for	

a	 car-like	mobile	 robot	 based	 on	 neural	 predictive	

control,	where	 a	multi-layer	 back-propagation	neural	

network	is	employed	to	model	nonlinear	kinematics	of	

a	mobile	robot.

	 4.3 Point Stabilization (Parking, Regulation)

	 In	point	stabilization,	a	mobile	robot	should	be	

moved	from	an	arbitrary	starting	pose	(i.e.,	position	and	

orientation)	and	stabilized	to	a	desired	goal	pose.	The	

point	stabilization	is	a	hard	task	due	to	the	existence	of	

a	nonholonomic	constraint.	Due	to	Brockett’s	conditions	

(29),	 a	 continuously	 differentiable,	 smooth	 feedback	

control	law	cannot	be	used	to	stabilize	a	nonholonomic	

system	 at	 a	 given	 configuration.	To	 overcome	 these	

limitations	discontinuous	(non-smooth)	and	time-varying	

control	laws	have	been	proposed.

	 Gu	and	Hu	(38)	developed	a	stabilizing	receding		

horizon	 controller	with	 simultaneous	 tracking	 and		

regulating	capability.	The	switching	between	tracking	

control	and	regulation	is	not	necessary.	Alves	and	Lages	

(55)	presented	an	MPC	technique	using	polar	coordinates	

to	the	problem	of	point	stabilization	of	a	nonholonomic	

mobile	robot.	Unlike	the	Cartesian	coordinate	counterpart,		

the	problem	described	in	polar	coordinates	generates	a	

feedback	system	with	no	steady	state	error.	Kuhne	et	

al.	(56)	also	formulated	a	cost	function	of	MPC	in	polar	

coordinates	to	solve	a	point	stabilization	problem	for	a	

nonholonomic	wheeled	mobile	 robot.	Wei	 et	 al.	 (57)	

studied	 the	 problem	of	 stabilizing	WMRs	 subject	 to	

wheel	slippage	from	an	initial	state	to	a	final	state.	When	

slippage	of	the	wheels	occurs,	WMRs	can	be	modeled		

as	 hybrid	 systems.	 Thus	 the	 hybrid	 optimal	 control	

can	be	formulated	as	a	smooth	MPC	problem	and	thus		

effectively	solved	using	numerical	methods.

5. Experimental Scenarios

	 In	this	section,	we	present	three	experimental	

scenarios	from	our	previous	work	to	show	that	MPC	can	

be	applied	to	real-time	applications.	The	first	experiment	

shows	a	comparison	between	trajectory	tracking	and	path	

following	of	an	omnidirectional	mobile	robot	(32).	The	

linearized	model	 of	 an	 omnidirectional	mobile	 robot	

is	used	 in	 the	second	experiment	 (58).	 In	 this	case,	a	

time	varying	convex	quadratic	optimization	problem	is		

formulated	and	solved	at	each	time	step,	leading	to	the		

reduction	of	the	computational	burden.	The	last	experiment		

compares	 trajectory	 tracking	 and	path	 following	of	 a	

unicycle-type	mobile	robot,	including	obstacle	avoidance	

and	a	time-parameterized	penalty	(28).

	 5.1 Experiment 1: NMPC of an Omnidirec-

tional Mobile Robot

	 Two	kinds	of	experiments	were	performed	to	

test	our	proposed	NMPC	method	for	an	omnidirectional	

mobile	robot	(32):	One	was	path	following	control	with	

a	constant	desired	velocity	of	1.0	m/s.	Here,	the	desired	
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robot	 orientation	was	 the	 path	 tangent	 direction.	The	

other	was	trajectory	tracking	control,	where	the	desired	

robot	orientation	was	changing	with	respect	to	time.	The	

following	eight-shaped	curve	was	selected	as	a	reference	

because	its	geometrical	symmetry	and	sharp	changes	in	

curvature	make	the	test	challenging:

	 (8)

	 where	t is	time	in	case	of	trajectory	tracking,	

while	this	reference	is	numerically	parameterized	by	the	

path	variable	s in	case	of	the	path	following	problem.	

For	the	path	following	problem,	the	error	state	vector	x
e
 

can	be	defined	as	follows:

	 (9)

	 where	[x, y, θ, a]T	is	the	desired	state	vector	

and	[xd, yd, θd, ad]
T	is	the	robot	state	vector.	a	and	a

d
	

represent	the	moving	direction	of	the	robot	and	of	the	

virtual	vehicle,	respectively.	By	using	the	error	state	and	

the	kinematic	model	[7],	the	error	state	dynamic	model	

with	 respect	 to	 the	 rotated	coordinate	 frame	becomes	

(32):

	 	 	 (10)

	 where	K	 denotes	 the	 path	 curvature	 and	u
r
	

refers	 to	 the	forward	velocity.	The	resulting	model	 is	

used	to	predict	the	future	output	behavior	of	our	MPC	

algorithm	(32).	Some	vital	parameters	used	in	our	ex-

periments	were	as	follows:	Q = diag(0.5,0.5,0.5), R = 

diag(0.1,0.1,0.1), δ = 0.07s,	and	prediction	step	=	3.

	 Figure	 5	 and	 Figure	 6	 illustrate	 results	 of	

trajectory	 tracking	 and	 path	 following	 experiments,	

respectively.	However,	the	desired	translation	velocity	

remains	constant	in	the	path	following	problem,	which	

increases	difficulties	in	following	the	sharp	turning	part	

of	the	given	path.

Figure 5.	Experimental	results	of	trajectory	tracking	control	using	NMPC.
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Figure 6.	Experimental	results	of	path	following	control	using	NMPC.

	 5.2 Experiment 2: A Linearized Version of 

MPC for an Omnidirectional Mobile Robot

	 One	possibility	to	reduce	computational	time	

of	 solving	 nonlinear	 optimization	 problems	 is	 to	 use		

linearization	techniques.	With	the	linearized	time-varying		

system,	 the	optimization	problem	can	be	 transformed	

into	a	QP	problem.	Since	it	turns	into	a	convex	problem,	

solving	 the	QP	 problem	 results	 in	 global	 optimal		

solutions.	This	linear	MPC	controller	is	computationally		

effective	 and	 can	 be	 easily	 used	 in	 fast	 real-time		

implementations.	From	Subsection	5.1,	we	linearized	the	

error	state	dynamic	model	[10]	around	the	reference	path.	

We	then	obtain	the	following	linear	model:

	 	 	 (11)

	 where	 		is	the	

reference	 curvature.	 The	 resulting	 model	 was		

implemented	into	the	QP	problem	with	input	constraints	

(58).	Some	important	parameters	used	in	our	experiments		

were	given	as	follows:	Q = diag(300,300,7,70), R = 

diag(1,0.001,3), δ = 0.05	s,	and	prediction	step	=	3.	

These	parameters	were	different	from	those	in	Subsection		

5.1	because	the	different	problem	formulation	and	the	

different	solvers	were	employed	in	our	implementation.

	 As	seen	in	Figure	7,	using	the	path	[8]	as	a	

reference,	we	achieve	a	real-time	implementation	of	our	

control	law.	The	forward	velocity	decreased	in	order	to	

preserve	the	curvature	radius	when	the	robot	made	sharp	

turns,	while	the	velocity	commands	did	not	exceed	the	

velocity	constraints,	as	expected.
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Figure 7.	Experimental	results	using	the	linear	MPC	law:	(a)	the	superimposed	snapshots,	and	(b)	the	forward	

velocity	and	the	rotational	velocity.

	 5.3 Experiment 3: NMPC of a Unicycle-type 

Robot

	 In	 this	 subsection,	 path	 following	 control	

and	trajectory	tracking	control	of	a	unicycle-type	robot	

are	 compared.	 The	 advantage	 of	 the	 path	 following		

controller	is	that	the	path	following	controller	eliminates	

aggressiveness	 of	 the	 tracking	 controller	 by	 forcing	

convergence	to	the	desired	path	in	a	smooth	way.	Thus,	

(a)

(b)
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we	incorporated	 this	benefit	 to	 the	 trajectory	 tracking	

problem	to	achieve	smooth	convergence	to	the	reference		

and	to	achieve	time	convergence	of	trajectory	tracking.	

This	was	accomplished	by	modifying	the	cost	function	

of	the	MPC	framework	through	an	addition	of	a	time	

dependent	 penalty	 term.	Based	 on	 this	 concept,	 our	

controller	was	 able	 to	 optimize	 the	 reference	 point		

between	the	virtual	vehicle	(path-parameterized)	and	the	

trajectory	point	(time-parameterized).	Furthermore,	in	

the	presence	of	obstacles,	the	controller	deviated	from	

the	reference	by	incorporating	obstacle	information	from	

range	 sensors	 into	 the	 optimization,	while	 respecting		

motion	 constraints.	 Numerous	 simulations	 were		

performed	to	evaluate	performance	of	our	system.	The	

following	circle	was	used	as	a	reference	path:

	 (12)

	 where	R	is	the	radius	of	the	circle.	Using	[5]	

and	the	following	error	state	vector	x
e
:

	 (13)

	 where	[x, y, θ]T	is	the	robot	state	vector	and	

[xd, yd, θd]
T	 is	 the	desired	state	vector,	 the	error	state	

dynamic	model	for	a	unicycle-type	robot	with	respect	

to	the	rotated	coordinate	frame	becomes

	 	 	 (14)

	 where	 	is	the	path	curvature.	However,	the	

robot’s	translation	velocity	 	has	to	be	varied	in	order	

to	achieve	trajectory	tracking.	Thus,	we	introduced	an	

acceleration	 control	 input	a,	where	 .	Then,	we	

obtained	 ,	where	 	and	 	 is	

the	desired	translation	velocity.	In	our	implementation,	

some	significant	parameters	were	set	as	follows:	Q = 

diag(0.2,2,0.01,0.01), R = diag(0.0001,0.0001,0.0001),	

prediction	step	=	3	and	δ = 0.1 s.	More	details	of	our	

problem	formulation	and	controller	design	can	be	found	

in	(28).	

	 The	 performance	 achieved	with	 pure	 path		

following,	pure	trajectory	tracking	(see	(38)	for	details),	

and	for	combined	trajectory	tracking	and	path	following	

is	assessed.	Figure	8(a)	and	Figure	8(b)	show	simulation	

results	of	pure	path	following	control	and	pure	trajectory	

tracking	control,	respectively,	with	four	different	initial	

poses.	The	velocities	of	pure	path	following	are	depicted	

in	Figure	9(a),	while	those	of	pure	trajectory	tracking	

are	plotted	in	Figure	9(b)	when	the	initial	pose	of	both	

cases	was	set	to	(1.5,-0.5,π).	As	seen	from	the	results,	in	

case	of	path	following	control,	the	robot	motions	are	less		

aggressive	while	the	robot	is	approaching	the	reference	

path	(see	Figure	8(a))	and	the	control	signals	are	less	likely		

saturated.	Figure	8(c)	shows	 the	simulation	results	of	

the	combination	of	path	following	control	and	trajectory		

tracking	 control.	The	 velocities	 are	 shown	 in	Figure	

9(c)	when	the	initial	pose	was	set	to	(1.5,-0.5,π).	This	

controller	is	able	to	achieve	both	reference	convergence	

and	time	convergence	with	smooth	motions.	As	seen	in	

the	results,	the	robot	converges	smoothly	to	the	desired	

path	and	then	it	reacts	to	achieve	zero	tracking	error.

	 In	 Figure	 10,	 two	moving	 obstacles	were	

present.	The	velocity	of	the	first	obstacle	was	0.2	m/s	at	

-135°,	while	the	velocity	of	the	second	obstacle	was	0.6	

m/s	at	150°.	In	the	simulation	results,	the	robot	moved	

backward	to	avoid	the	collision	and	waited	until	it	was	

able	to	find	a	way	to	stay	away	from	the	obstacles	and	

to	follow	the	reference.

	 Next,	a	unicycle-type	mobile	robot,	shown	in	

Figure	 2(a)	was	used	 in	 real-world	 experiments.	The	

robot	controller	is	an	ATMEGA644	microprocessor	with	

64	KB	flash	program	memory,	16MHz	clock	frequency	
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and	4	KB	SRAM.	The	localization	was	given	by	a	camera	

looking	down	upon	the	robot’s	workplace	and	a	PC	was	

used	to	compute	the	control	inputs	and	then	sent	these	

inputs	 to	 the	 robot	 via	WLAN.	The	 same	 reference	

used	 in	 simulation	was	 employed	 in	 this	 experiment.	

From	experimental	results	shown	in	Figure	11,	system	

performance	degradation	 compared	 to	 the	 simulation	

results	was	mainly	caused	by	time	delay	originated	from	

computation	time	of	the	control	algorithm,	the	vision-

based	tracking	system,	and	the	wireless	connection.

Figure 8.	Simulation	results	with	four	different	initial	poses:	(a)	pure	path	following,	(b)	pure	trajectory	

tracking,	and	(c)	the	combination	of	path	following	and	trajectory	tracking.

(a) (b)

(c)
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(a)

(b)

Figure 9.	The	robot	velocities	when	the	initial	pose	was	set	to	(1.5,	-0.5,	π):	(a)	pure	path	following,	(b)	pure	

trajectory	tracking,	and	(c)	the	combination	of	path	following	and	trajectory	tracking.
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(c)

Figure 9.	The	robot	velocities	when	the	initial	pose	was	set	to	(1.5,	-0.5,	π):	(a)	pure	path	following,	(b)	pure	

trajectory	tracking,	and	(c)	the	combination	of	path	following	and	trajectory	tracking.	(cont.)

Figure 10.	The	simulation	results	when	two	moving	polygonal	obstacles	were	present.
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(a)

(b)

Figure 11.	Experimental	results	using	our	NMPC	law:	(a)	the	robot	positions	and	its	reference,	and	(b)	the	

robot’s	velocities.
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6. Future Research Perspectives

	 The	topics	listed	here	are	not	intended	to	be	

exhaustive,	but	rather	to	be	indicative	of	the	classes	of	

problems	which	we	are	interested	in.

 6.1 Decentralized MPC

	 Formation	control	 is	one	of	 the	most	active	

research	topics	in	multi-robot	systems	(61).	The	goal	of	

formation	control	is	that	a	group	of	robots	has	to	maintain	

a	desired	formation	shape,	while	tracking	or	following	a	

reference.	One	way	to	solve	this	problem	is	to	formulate	

it	as	a	centralized	MPC	scheme,	i.e.,	one	MPC	controller		

has	the	full	knowledge	about	the	entire	robot	system	and	

computes	all	the	control	inputs	for	the	entire	robot	system.		

However,	 in	 general,	 the	 centralized	 implementation		

is	 not	 practical	 since	 the	 size	 of	 the	 state	 variables	

depends	 typically	 on	 the	 number	 of	mobile	 robots.	

When	the	control	horizon	becomes	larger,	the	number	

of	variables,	of	which	the	robot	has	to	find	the	value,	

increases	rapidly.	Also,	the	demands	of	computational		

power	and	memory	are	daunting	for	the	real-time	solution		

of	 systems	with	 a	 large	 control	 horizon	 and	 a	 large	

number	 of	mobile	 robots.	Thus,	 the	 research	has	 led	

to	 decomposing	 the	 centralized	 system	 into	 smaller	

subsystems,	which	are	independently	controlled	in	the	

MPC	framework.	

	 The	main	challenge	is	that	stability	and	feasibility		

of	 decentralized	 schemes	 are	 very	 difficult	 to	 prove	

and/or	too	conservative	(62).	Even	if	we	assume	T
p
	to	

be	 infinite,	 the	decentralized	MPC	approach	does	not	

guarantee	that	solutions	computed	locally	are	globally	

feasible	and	stable.	The	decentralization	of	the	control	

is	 further	 complicated	when	 disturbances	 act	 on	 the	

subsystems	making	 the	 prediction	of	 future	 behavior	

uncertain.	The	 key	point	 to	 guarantee	 feasibility	 and		

stability	is	that	when	decisions	are	made	in	a	decentralized		

fashion,	the	actions	of	each	subsystem	must	be	consistent	

with	those	of	the	other	subsystems	(63).	Thus,	decisions	

taken	 independently	do	not	 lead	 to	 a	violation	of	 the	

coupling	 constraints.	 Some	 approaches	 based	on	 this	

strategy	were	proposed	by	Dunbar	and	Murray	(64),	and	

Kanjanawanishkul	and	Zell	(65),	and	references	therein.

 6.2 An Improved Real-time MPC Frame-

work

	 As	shown	in	our	experimental	scenarios,	the	

MPC	framework	can	be	used	beyond	process	control.	

However,	 the	main	 obstacle	 in	 applying	 the	MPC	

technology	 to	 real-time	 applications,	 e.g.,	WMRs	 is	

that	the	optimization	problem	is	computationally	quite	

demanding,	especially	for	nonlinear	systems.	In	order	

to	reduce	the	online	computational	requirements,	there	

are	a	number	of	directions	in	which	future	research	on	

this	problem	can	proceed.	The	first	direction	is	to	apply	

function	approximations,	e.g.,	artificial	neural	networks,	

which	can	be	trained	off-line	to	represent	the	optimal	

control	 law.	 Second,	 explicit	MPC	 techniques,	 such	

as	multi-parametric	 quadratic	 programming	 (mp-QP)	

approaches,	may	be	 employed	 since	 they	 can	handle	

constrained	MIMO	linear	models	as	well	as	constrained	

MIMO	piecewise	linear	models	(66),	where	part	of	the	

computations	are	performed	off-line.	The	third	direction	

to	reduce	the	online	computational	requirements	relates	

to	open-loop	optimization	solvers.	We	should	improve	

and	test	several	nonlinear	optimization	algorithms	which	

can	enlarge	the	range	of	conditions	for	which	a	nonlinear	

MPC	controller	becomes	real-time	implementable.

7. Conclusions

	 The	main	objective	of	this	paper	is	to	review	

MPC	schemes	that	are	applied	to	motion	control	tasks	

of	WMRs.	We	 classify	 publications	 based	 on	 three	

criteria,	i.e.,	MPC	models,	robot	kinematic	models,	and	

motion	tasks,	as	seen	in	Table	1.	With	the	development	
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of	increasingly	faster	processors	and	efficient	numerical		

algorithms,	 the	 use	 of	 an	MPC	 controller	 in	 faster		

applications	(e.g.,	WMRs)	becomes	possible.	Successful		

real-time	motion	 tasks	 of	WMRs	have	 already	 been	

shown	 in	 Section	 5.	 Furthermore,	 the	 comparison	

between	path	following	and	trajectory	tracking	for	an	

omnidirectional	mobile	robot	and	a	unicycle-type	mobile	

robot	has	also	been	shown	and	discussed.

	 Although	MPC	approaches	 of	WMRs	have	

been	particularly	well	 studied,	 as	 seen	 in	our	 survey,	

much	work	 remains	 to	 be	 done	 to	 develop	 strategies	

capable	of	yielding	better	performance	in	case	of	mobile	

robots	with	parameter	uncertainties,	partially-known	or	

unknown	environments,	and	multi-robot	cooperation.

8. References

(1)		 Broxvall	M,	Seo	BS,	Kwon	WY.	The	PEIS	kernel:	

A	middleware	for	ubiquitous	robotics.	Proceedings		

of	 the	 IROS-07	Workshop	 on	 Ubiquitous		

Robotics	Space	Design	and	Applications;	2007	

Oct	29-Nov	2;	San	Diego,	CA;	2007.

(2)		 Morin	P,	Samson	C.	Motion	control	of	wheeled	

mobile	robot.	In:		Siciliano	B,	Khatib	O,	editors.		

Springer	Handbook	of	Robotics.	Berlin	Heidelberg:		

Springer;	2008.	p.	799-826.

(3)	 Oriolo	G,	Luca	AD,	Vendittelli	M.	WMR	control		

via	 dynamic	 feedback	 linearization:	 design,	

implementation	and	experimental	validation.	IEEE	

Transactions	on	Control	Systems	Technology.		

2002;10(6):	835-852.

(4)	 Solea	R,	Nunes	U.	 Trajectory	 planning	with	

velocity	planner	for	fully-automated	passenger	

vehicles.	 Proceedings	 of	 the	 IEEE	 Intelligent	

Transportation	Systems	Conference;	2006	Sep	

17-20;	Toronto,	Canada;	2006.	P.	474-480.

(5)	 Soeanto	D,	Lapierre	L,	 Pascoal	A.	Adaptive	

non-singular	path-following,	control	of	dynamic	

wheeled	robots.	Proceedings	of	the	International	

Conference	on	Advanced	Robotics;	2003	Jun	30-

Jul	3;	Coimbra,	Portugal,	2003.	P.	1387–1392.

(6)	 Morari	M,	Lee	J.	Model	predictive	control:	Past,	

present,	 and	 future.	Computers	 and	Chemical	

Engineering.	1999;23(4/5):	667–682.

(7)	 Qin	SJ,	Badgwell	T.	A	survey	of	industrial	model	

predictive	control	technology.	Control	Engineering		

Practice.	2003;11(7):	733–764.

(8)	 Allgower	F,	Findeisen	R,	Nagy	ZK.	Nonlinear		

model	 predictive	 control:	 from	 theory	 to		

application.	 Journal	 of	 Chinese	 Institute	 of	

Chemical	Engineers.	2004;35(3):	299–315.

(9)	 Bemporad	A,	Morari	M.	Control	 of	 systems	

integrating	 logic,	 dynamics,	 and	 constraints.	

Automatica.	1999;35(3):	407–427.

(10)	 Mayne	DQ,	Rawlings	 JB,	Rao	CV,	 Scokaert	

POM.	Constrained	model	 predictive	 control:	

stability	 and	optimality.	Automatica.	 2000;36:	

789–814.

(11)	 Fontes	 F.	 A	 general	 framework	 to	 design		

stabilizing	nonlinear	model	predictive	controllers.		

System	and	Control	Letters.	2001;42(2):	85–93.

(12)	 Magni	L,	Raimondo	DM,	Allgower	F,	editors.	

Nonlinear	model	 predictive	 control	 –	 towards	

new	challenging	applications.	Berlin:	Springer-

Verlag,	2009.

(13)	 Clarke	DW,	Mohtadi	C,	Tuffs	PS.	Generalized	

predictive	control,	part	I:	The	basic	algorithm.	

Automatica.	1987;23(2):	137–148.

(14)	 Clarke	DW,	Mohtadi	C,	Tuffs	PS.	Generalized		

predictive	 control,	 part	 II:	 Extension	 and		

interpretations.	Automatica.	1987;23(2):	149–160.

(15)	 Kwon	WH,	Han	S.	Receding	horizon	control:	

Model	 predictive	 control	 for	 state	models.		

London:	Springer-Verlag;	2005.



834 KKU  Res. J. 2012;  17(5)

(16)	 Jadbabaie	A,	Yu	 J,	Hauser	 J.	 	Unconstrained	

receding	horizon	control	of	nonlinear	systems.	

IEEE	 Transactions	 on	 Automatic	 Control.	

2001;46(5):	776–783.

(17)	 Primbs	 JA,	Nevistic	V,	Doyle	 JC.	A	 receding	

horizon	generalization	of	 pointwise	min-norm	

controllers.	 IEEE	Transactions	 on	Automatic	

Control.	2000;45(5):	898–909.

(18)	 Michalska	H,	Mayne	DQ.	 Robust	 receding		

horizon	 control	 of	 constrained	 nonlinear		

systems.	 IEEE	 Transactions	 on	 Automatic		

Control.	1993;38(11):	1623–1633.

(19)	 Chen	H,	Allgower	F.	A	quasi-infinite	 horizon	

nonlinear	model	predictive	control	scheme	with	

guaranteed	stability.	Automatica.	1998;34(10):	

1205–1218.

(20)	 Magni	L,	Scattolini	R.	State-feedback	MPC	with	

piecewise	constant	control	for	continuous-time	

systems.	Proceedings	of	 the	 IEEE	Conference	

on	Decision	and	Control;	2002	Dec	10-13;	Las	

Vegas,	USA;	2002.	P.	4625–4630.

(21)	 Jadbabaie	A,	Yu	J,	Hauser	J.	Stabilizing	receding	

horizon	control	of	nonlinear	systems:	A	control	

Lyapunov	function	approach.	Proceedings	of	the	

American	Control	Conference;	1999	Jun	2-4;	San	

Diego,	CA;	1999.	P.	1535–1539.

(22)	 Scokaert	 POM,	Mayne	 DQ,	 Rawlings	 JB.		

Suboptimal	model	predictive	control	(feasibility		

implies	 stability).	 IEEE	 Transactions	 on		

Automatic	Control.	1999;44(3):		648–654.

(23)	 Bartlett	RA,	Wachter	A,	Biegler	LT.	Active	set	

vs.	interior	point	strategies	for	model	predictive	

control.	 Proceedings	 of	 the	American	Control	

Conference;	2000	Jun	28-30;	Chicago,	IL;	2000.	

P.	4229–4233.

(24)	 Tenny	M,	Wright	 S,	 Rawlings	 J.	Nonlinear	

model	predictive	control	via	feasibility-perturbed		

sequential	quadratic	programming.	Computational		

Optimization	 and	Applications.	 2004;28(1):	

87–121.

(25)	 Cervantes	A,	Wachter	A,	Tutuncu	R,	Biegler	

L.	A	 reduced	 space	 interior	 point	 strategy	 for	

optimization	of	 differential	 algebraic	 systems.	

Computers	&	Chemical	Engineering.	2000;24(1):	

39–51.

(26)	 Biegler	LT,	Grossmann	 IE.	Retrospective	 on		

optimization.	Computers	&	Chemical	Engineering.		

2004;28(8):	1169–1192.

(27)	 Siegwart	 R,	 Nourbakhsh	 I.	 Introduction	 to		

autonomous	mobile	robots.	The	MIT	Press;	2004.

(28)	 Kanjanawanishkul	K,	Hofmeister	M,	Zell	A.	

Smooth	 reference	 tracking	 of	 a	mobile	 robot	

using	 nonlinear	 model	 predictive	 control.		

Proceedings	of	the	4th	European	Conference	on	

Mobile	Robots	(ECMR);	2009	Sept	23-25;	Mlini/

Dubrovnik,	Croatia;	2009.	P.	161–166.

(29)	 Brockett	RW.	Asymptotic	stability	and	feedback	

stabilization.	Differential	Geometric	Control	

Theory.	Boston:	Birkhauser;	1983,	P.	181–191.

(30)	 Kolmanovsky	I,	McClamroch	NH.	Developments	

in	nonholonomic	control	problems.	IEEE	Control	

Systems	Magazine.	1995;15(6):	20–36.

(31)	 Campion	G,	 Bastin	 G,	 D´Andrea-Novel	 B.		

Structural	 properties	 and	 classification	 of		

kinematic	 and	 dynamic	models	 of	 wheeled		

mobile	robots.	IEEE	Transactions	on	Robotics	

and	Automation.	1996;12(1):	47–62.

(32)	 Li	X,	Kanjanawanishkul	K,	Zell	A.	Nonlinear	

model	predictive	control	of	an	omnidirectional	

mobile	robot.	Proceedings	of	the	10th	International		

Conference	on	Intelligent	Autonomous	Systems	

(IAS2008);	 2008	 Jul	 23-25;	 Baden-Baden,		

Germany;	2008.	P.	92–99.



835KKU  Res. J. 2012;  17(5)

(33)	 Lages	WF,	Alves	JAV.	Real-time	control	of	a	

mobile	robot	using	linearized	model	predictive	

control.	Proceedings	of	the	4th	IFAC	Symposium		

on	Mechatronic	 Systems;	 2006	 Sep	 12-14;		

Heidelberg,	Germany;	2006.	P.	968–973.

(34)	 Klancar	G,	Skrjanc	I.	Tracking-error	model-based	

predictive	control	for	mobile	robots	in	real	time.	

Robotics	and	Autonomous	Systems.	2007;55(6):	

460–469.

(35)	 Jiang	X,	Motai	Y,	 Zhu	X.	 Predictive	 fuzzy	

control	 for	a	mobile	 robot	with	nonholonomic	

constraints.	Proceedings	of	the	12th	International	

Conference	on	Advanced	Robotics;	2005	Jul	18-

20;	Seattle,	WA;	2005.	P.	58–63.

	(36)	 Seyr	M,	 Jakubek	 S.	Mobile	 robot	 predictive		

trajectory	tracking.	Proceedings	of	the	International		

Conference	on	Informatics	in	Control;	2005	Sep	

13-14;	Barcelona,	Spain;	2005.	P.	112–119.

(37)	 Hedjar	 R,	 Toumi	 R,	 Boucher	 P,	 Dumur	D.		

Finite	 horizon	nonlinear	 predictive	 control	 by	

the	Taylor	approximation:	application	to	robot	

tracking	 trajectory.	 International	 Journal	 of	

Applied	Mathematics	 and	Computer	 Science.	

2005;15(4):	527–540.

(38)	 Gu	D,	Hu	H.	Receding	horizon	tracking	control	

of	wheeled	mobile	 robots.	 IEEE	Transactions	

on	Control	 Systems	Technology.	 2006;14(4):	

743–749.

(39)	 Essen	 HV,	 Nijmeijer	 H.	 Non-linear	model		

predictive	control	of	constrained	mobile	robots.	

Proceedings	of	the	European	Control	Conference;		

2001	Sep	4-7;	Porto,	Portugal;	2001.	P.	1157–

1162.

(40)	 Xie	F,	 Fierro	R.	First-state	 contractive	model	

predictive	 control	 of	 nonholonomic	mobile	

robots.	 Proceedings	 of	 the	American	Control	

Conference;	2008	Jun	11-13;	Seattle,	WA;	2008.	

P.	3494–3499.

(41)	 Araujo	H,	Conceicao	A,	Oliveira	G,	Pitanga	J.	

Model	predictive	control	based	on	LMIs	applied	

to	an	omni-directional	mobile	robot.	Proceedings	

of	 the	18th	 IFAC	World	Congress;	 2011	Aug	

28-Sep	2;	Milano,	Italy;	2011.	P.	8171–8176.

(42)	 Chen	X,	Li	Y.	Neural	network	predictive	control	

for	mobile	 robot	 using	PSO	with	 controllable		

random	 exploration	 velocity.	 International	

Journal	 of	 Intelligent	 Control	 and	 Systems.	

2007;12(3):	217–229.

(43)	 Pan	Y,	Wang	J.	A	neurodynamic	optimization	

approach	to	nonlinear	model	predictive	control.	

Proceedings	of	the	IEEE	International	Conference		

on	Systems	Man	and	Cybernetics	(SMC);	2010	

Oct	10-13;	Istanbul,	Turkey;	2010.	P.	1597–1602.

(44)	 Maurovic	 I,	 Baotic	M,	 Petrovic	 I.	 Explicit	

model	predictive	control	for	trajectory	tracking	

with	mobile	 robots.	Proceedings	of	 the	 IEEE/

ASME	International	Conference	on	Advanced		

Intelligent	Mechatronics	(AIM2011);	2011	Jul	

3-4;	Budapest,	Hungary;	2011.	P.	712–717.

(45)	 Ollero	A,	Amidi	O.	Predictive	path	tracking	of	

mobile	robots:	Application	to	the	CMU	Navlab.	

Proceedings	of	the	International	Conference	on	

Advanced	Robotics;	1991	Jun	19-22;	Pisa,	Italy;	

1991.	P.	1081–1086.

(46)	 Normey-Rico	JE,	Gomez-Ortega	J,	Camacho	EF.	

A	Smith-predictor	based	generalized	predictive	

controller	for	mobile	robot	path	tracking.	Control	

Engineering	Practice.	1999;7(6):	729–740.

(47)	 Vougioukas	 SG.	Reactive	 trajectory	 tracking	

for	mobile	 robots	 based	 on	 non	 linear	model	

predictive	 control.	 Proceedings	 of	 the	 IEEE	

International	 Conference	 on	 Robotics	 and		

Automation;	2007	Apr	10-14;	Roma,	Italy;	2007.	

P.	3074–3079.



836 KKU  Res. J. 2012;  17(5)

(48)	 Conceicao	A,	Oliveira	H,	Silva	AS,	Oliveira	D,	

Moreira	A.	A	nonlinear	model	predictive	control	

of	an	omni-directional	mobile	robot.	Proceedings		

of	 the	 IEEE	 International	 Symposium	 on		

Industrial	Electronics;	2007	Jun	4-7;	Vigo,	Spain;	

2007.	P.	2161	–	2166.

(49)	 Falcone	 P,	 Borrelli	 F,	 Asgari	 J,	 Tseng	HE,	

Hrovat	D.	Predictive	active	steering	control	for	

autonomous	vehicle	systems.	IEEE	Transactions	

on	Control	 Systems	Technology.	 2007;15(3):	

566–580.

(50)	 Bak	M,	Poulsen	NK,	Ravn	O.	Path	 following		

mobile	robot	in	the	presence	of	velocity	constraints		

(Technical	Report):	Informatics	and	Mathematical		

Modeling,	Technical	University	 of	Denmark;	

2001.

(51)	 Raffo	G,	Gomes	G,	Normey-Rico	J,	Kelber	C,	

Becker	L.	A	predictive	controller	for	autonomous	

vehicle	 path	 tracking.	 IEEE	Transactions	 on	

Intelligent	Transportation	Systems.	2009;10(1):	

92–102.

(52)	 Yang	X,	He	K,	Guo	M,	Zhang	B.	An	intelligent	

predictive	 control	 approach	 to	 path	 tracking		

problem	of	autonomous	mobile	robot.	Proceedings		

of	the	IEEE	International	Conference	on	Systems,	

Man,	 and	Cybernetics;	 1998	Oct	 11-14;	 San	

Diego,	CA;	1998.	P.	3301–3306.

(53)	 Gomez-Ortega	 J,	 Camacho	 E.	Mobile	 robot	

navigation	 in	 a	 partially	 structured	 static		

environment	 using	 neural	 predictive	 control.	

Control	 Engineering	 Practices.	 1996;4(12):	

1669-1679.

(54)	 Gu	D,	Hu	H.	Neural	 predictive	 control	 for	 a	

car-like	mobile	robot.	Robotics	and	Autonomous	

Systems.	2002;39(2):	73–86.

(55)	 Alves	J,	Lages	W.	Real-time	point	stabilization	

of	a	mobile	robot	using	model	predictive	control.	

Proceedings	of	the	13th	IASTED	International	

Conference	Robotics	and	Application;	2007	Aug	

29-31;	Wuerzburg,	Germany;	2007.	P.	58–63.

(56)	 Kuhne	F,	Lages	W,	da	Silva	Jr	J.	Point	stabilization		

of	mobile	robots	with	nonlinear	model	predictive	

control.	Proceedings	of	 the	IEEE	International	

Conference	on	Mechatronics	and	Automation;	

2005	Jul	29-Aug	1;	Niagara	Falls,	Canada;	2005.	

P.	1163–1168.

(57)	 Wei	S,	Zefran	M,	Uthaichana	K,	DeCarlo	R.	

Hybrid	model	predictive	control	for	stabilization		

of	wheeled	mobile	robots	subject	to	wheel	slippage.		

Proceedings	of	the	IEEE	International	Conference	

on	Robotics	and	Automation;	2007	Apr	10-14;	

Roma,	Italy;	2007.	P.	2373	–	2378.

(58)	 Kanjanawanishkul	K,	Zell	A.	 Path	 following	

for	 an	 omnidirectional	mobile	 robot	 based	 on	

model	predictive	control.	Proceedings	of	the	2009	

IEEE	International	Conference	on	Robotics	and		

Automation	 (ICRA	2009);	 2009	May	 12-17;	

Kobe,	Japan;	2009.	P.	3341	–	3346.

(59)	 Aguiar	AP,	Dacic	DB,	Hespanha	JP,	Kokotovic	P.	

Path-following	or	reference-tracking?	An	answer	

relaxing	the	limits	to	performance.	Proceedings	

of	the	IFAC/EURON	Symposium	on	Intelligent	

Autonomous	Vehicles;	 2004	 Jul	 5-7;	Lisbon,	

Portugal;	2004.

(60)	 Skjetne	R,	Fossen	T,	Kokotovic	P.	Robust	output	

maneuvering	 for	 a	 class	of	nonlinear	 systems.	

Automatica.	2004;40(3):	373–383.

(61)	 Murray	RM.	Recent	 research	 in	 cooperative-

control	 of	multivehicle	 systems.	 Journal	 of	

Dynamics,	Systems,	Measurement	and	Control.	

2007;129(5):	571–583.

(62)	 Keviczky	 T,	 Borrelli	 F,	 Balas	 GJ.	 A	 study	

on	 decentralized	 receding	 horizon	 control	 for		

decoupled	systems.	Proceedings	of	the	American	



837KKU  Res. J. 2012;  17(5)

Control	Conference;	2004	Jun	30-Jul	2;	Boston,	

Massachusetts;	2004.	P.	4921–4926.

(63)	 Richards	AG,	How	JP.	A	decentralized	algorithm	

for	robust	constrained	model	predictive	control.	

Proceedings	of	the	American	Control	Conference;		

2004	Jun	30-Jul	2;	Boston,	Massachusetts;	2004.	

P.	4261–4266.

(64)	 Dunbar	WB,	Murray	RM.	Distributed	receding		

horizon	 control	 for	multi-vehicle	 formation		

stabilization.	Automatica.	2006;42(4):	549–558.

(65)	 Kanjanawanishkul	K,	Zell	A.	Distributed	model	

predictive	control	for	coordinated	path	following		

control	 of	 omnidirectional	 mobile	 robots.		

Proceedings	of	the	IEEE	International	Conference		

on	Systems,	Man,	and	Cybernetics	(SMC	2008);	

2008	Oct	12-15;	Singapore;	2008.	P.	3120–3125.

(66)	 Bemporad	A,	Morari	M,	Dua	V,	Pistikopoulos	

EN.	The	explicit	 linear	quadratic	 regulator	 for	

constrained	 systems.	Automatica.	 2002;38(1):	

3–20.


