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Abstract

	 Model predictive control (MPC) has been one of the most promising control strategies in industrial 

processes for decades. Due to its remarkable advantages, it has been extended to many areas of robotic research, 

especially motion control. Therefore, the goal of this paper is to review motion control of wheeled mobile robots 

(WMRs) using MPC. Principles as well as key issues in real-time implementations are first addressed. We then 

update the current literature of MPC for motion control. We also classify publications by using three criteria, i.e., 

MPC models, robot kinematic models, and basic motion tasks. MPC models categorized here include nonlinear 

MPC, linear MPC, neural network MPC, and generalized predictive control (GPC), while robot kinematic models 

we focus on consist of unicycle-type vehicles, car-like vehicles, and omnidirectional vehicles. Basic motion tasks, 

in general, are classified into three groups, i.e., trajectory tracking, path following, and point stabilization. To show 

that MPC strategies are capable of real-time implementations, some experimental scenarios from our previous 

work are given. We also conclude by identifying some future research directions.

Keywords:	 wheeled mobile robots, model predictive control, motion control, trajectory tracking, path following

KKU  Res. J. 2012;  17(5):811-837
http : //resjournal.kku.ac.th

1. Introduction

	 Robots have become increasingly more important 	

in human daily lives in the last decade and apparently 

the number of robots will increase and get more involved 

in the human society in the near future (1). Real-world 

applications employing robots have already shown the 

effectiveness and usefulness of robots, especially in 

industry. However, many unsolved problems still exist 

in many robotic research areas.

	 In general, basic tasks in robotic research are 

mapping, controlling, planning and localizing (2). Usually, 	

a robot creates a map of the environment. Using this 

map, it can localize itself. Then it plans the reference if 

it wants to travel. The controller is designed to move it 

to the target. However, accomplishing those missions 

is not an easy task. In this paper, we address only the 

problem of motion control of wheeled mobile robots 

(WMRs). Motion control of WMRs has been, and still is, 

the subject of numerous research studies. Many nonlinear 
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techniques have been proposed in the literature, e.g., 

dynamic feedback linearization (3), sliding mode control 

(4), backstepping techniques (5), etc., to name some. 

For this paper, the goal is to present a survey of model 

predictive control (MPC) applied to WMRs. Although 

MPC is not a new control method, works dealing with 

MPC of WMRs are sparse.

	 Model predictive control (MPC), also referred 

to as receding horizon control (RHC) and moving horizon 	

optimal control, has been widely adopted in process 

control industry for decades because control objectives 

and operating constraints can be integrated explicitly in 

the optimization problem that is solved at each instant. 

Many successful MPC applications have been reported 

in the last three decades (6, 7). Although it is traditionally 

applied to plants with dynamics slow enough to permit 

computations between samples, recently, due to the 

combination of advanced research results and the advent 

of faster computers, it has become possible to extend the 

implementation of MPC design to systems governed by 

faster dynamics, including WMRs.

	 The rest of the paper is structured as follows: in 

Section 2, principles and relevant literature of MPC are 

introduced. Major practical issues of MPC are discussed 	

in Section 3. The current literature of MPC for motion 	

control is updated and classified into three basic 	

motion tasks, i.e., trajectory tracking, path following, 

and point stabilization, in Section 4. Section 5 illustrates 	

experimental scenarios from our previous work, 

where MPC techniques were implemented in real-time 	

applications. We also suggest some future research 

directions in Section 6 and finally, we close our review 

with some conclusions in Section 7.

2. Principles and Formulation

	 The conceptual structure of MPC is illustrated 

in Figure 1. As its name suggests, an MPC algorithm 

employs an explicit model of the plant to be controlled 

which is used to predict the future output behavior. 

This prediction capability allows computing a sequence 

of manipulated variable adjustments in order to solve 

optimal control problems in real time, where the future 

behavior of a plant is optimized over a future horizon, 

possibly subject to constraints on the manipulated inputs 

and outputs (8-12). The result of the optimization is 	

applied according to a receding horizon philosophy: At 

time t only the first input of the optimal command sequence 

is actually applied to the plant. The remaining optimal 

inputs are discarded, and a new optimal control problem 

is solved at time t+d, where d is the sampling period. 
As new measurements are collected from the plant at 

each time t, the receding horizon mechanism provides 

the controller with the desired feedback characteristics.
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Figure 1. Principle of model predictive control (8).

	 When the model is linear, the optimization 

problem is a convex quadratic programming (QP) 	

problem if the performance index is expressed through 

the l
2
-norm, or a linear programming problem if 

expressed through the l
1
/l

∞
-norm. It has a unique, global 

minimum which can be quickly and reliably computed 

numerically in a constrained case. In an unconstrained 

case the solution can be computed analytically as a linear 

feedback control law. If a process model is in the form of 

a discrete transfer function or equivalently a difference 	

equation (e.g., an ARX-type model), generalized 	

predictive control (GPC) (13, 14) can be derived. By 

now, important issues of linear MPC theory are well 

addressed (6, 15). However, many systems are inherently 	

nonlinear and linear MPC is inadequate for highly 	

nonlinear systems. Therefore, nonlinear models must be 

used (8). However, the optimization problem is certainly 

not linear or quadratic, it is generally a nonconvex when 

the model is nonlinear. For such problems, there are no 

sufficiently fast and reliable numerical optimization 

procedures. Therefore, many attempts have been made to 

construct simplified (and generally suboptimal) nonlinear 	

MPC algorithms avoiding full online nonlinear 	

optimization. One possibility is to use model linearization 	

or multiple linear models, in which only a QP problem 

is solved online (6). There are also many designs of 

predictive algorithms based on nonlinear optimization 

and also using neural network techniques.

	 A nonlinear system is normally described by 

the following nonlinear differential equation:

	

	 	 	 (1)

	 where    are the n 

dimensional state vector and the m dimensional input 

vector of the system, respectively.  and  
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denote the set of feasible states and inputs of the system, 

respectively. In nonlinear MPC (NMPC), the input 

applied to the system is usually given by the solution 	

of the following finite horizon open-loop optimal control 

problem, which is solved at every sampling instant:

	 	 (2)

	 	 (3)

	 where  The bar 

denotes an internal controller variable. T
p
 represents 

the length of the prediction horizon or output horizon, 

and T
c
 denotes the length of the control horizon or input 

horizon . When T
p
 = ∞, we refer to this as the 

infinite horizon problem, and similarly, when T
p
 is finite, 

as a finite horizon problem.     is the terminal 

penalty and W is the terminal region. The deviation from 

the desired values is weighted by the positive definite 

matrices Q and R.

	 A standard MPC scheme works as follows (8):

	 1)	 Obtain measurements/estimates of the 

states of the system at time instant t.

	 2)	 Calculate an optimal input series  

by minimizing the desired cost function over the predictive 	

horizon in the future using the system model, the 

generated predictive state sequence    from 

 should contain the terminal state   

that falls in the required terminal state region.

	 3)	 Implement the first part of the optimal input 

series  until the new measurement/estimates of the 

states are available.

	 4)	 Continue with 1) at the next time instant t 

= t + δ.

	 As mentioned before that MPC has been one 

of the most promising control strategies. The reason is 

due to the following remarkable advantages of MPC 

over conventional control schemes:

	 •	 its ability to incorporate generic models, 

linear and nonlinear, and constraints in the optimal 

control problem;

	 •	 its formulation that can be extended to 

handle multiple-variable, nonlinear, time-varying plants 

in a single control formulation;

	 •	 its ability to redefine cost functions and 

constraints as needed to reflect changes in the system 

and/or the environment;

	 •	 its ability to use future values of references 

when they are available, allowing MPC to improve 

performance in navigation;

	 •	 its ability to tune parameters that are di-

rectly related to a cost function.

3. Practical Issues of Nonlinear MPC

	 In this section, we review some practical 	

issues, i.e., feasibility, stability and real-time optimization. 	

They are some of the most important aspects in NMPC 

implementations.

	 3.1	Feasibility

	 Typically one assumes feasibility at time t = 0 

and chooses the cost function and the stability constraints 

such that feasibility is preserved at the following time 

steps. This can be done, for example, by ensuring that 

the shifted optimal sequence   

is feasible at time t+δ. Furthermore, typically the 
constraints in [3] which involve state components are 

treated as soft constraints, for instance by adding the slack 	

variable e, while input constraints in [3] are maintained 
as hard because they come from actuator saturation 

and/or physical, safety or economical requirements. 

Relaxing the state constraints removes the feasibility 

problem. Keeping them tight does not make sense from a 

practical point of view because of the presence of noise, 

disturbances, and numerical errors.
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	 3.2	Stability

	 The next major concern in the use of MPC is 

that whether such an open-loop control can guarantee 

system stability. It is shown that an infinite predictive 

control horizon can guarantee stability of a system, but 

the infinite predictive horizon may not be feasible for 

a nonlinear system in practice (8). Mayne et al. (10) 

have presented the essential principles for the stability 

of MPC of constrained dynamical systems. Different 

approaches to attain closed-loop stability using finite 

horizon lengths exist. We review some of the popular 

techniques proposed in the literature to enforce stability. 

For reasons of a simple presentation, no detailed proofs 

are given.

	 Most recent MPC controllers use a terminal 

cost and enforce a terminal constraint set. The following 

stability theorem given in (8) provides a way to find the 

suitable terminal penalty and constraints.

	 Theorem 1: Suppose

	 1)	  is compact,  is connected 

and the origin is contained in the interior of   .

	 2)	 The vector field  is 

continuous in  and locally Lipschitz in  and satisfies

.

	 3)	  i s  cont inuous  in 

all arguments with  and 

.

	 4)	 The terminal penalty  is 

continuous with  and that the terminal region W 

is given by  for some 

such that .

	 5)	 There exists a continuous local control law  

 such that    for all  and

	 (4)

	 6)	 The NMPC open-loop optimal control 

problem [2] has a feasible solution for t = 0.

	 Then for any sampling time , the 

nominal closed-loop system is asymptotically stable 

and the region of attraction is given by the set of states 

for which the open-loop optimal control problem has a 

feasible solution.

	 Many NMPC schemes follow this theorem 

to guarantee stability. Generally, they differ in how the 

terminal region and terminal penalty terms are obtained. 

Basically, the terminal penalty and the terminal region 

are determined off-line such that the cost function 

gives an upper bound on the infinite horizon cost and 	

guarantees a decrease in the value function as the horizon 

recedes in time. Various ways to determine a suitable 	

terminal penalty term and terminal region exist. Examples 	

are the use of a control Lyapunov function as a terminal 

penalty (16, 17) for the system in the terminal region, 

enforcing a decrease in the value function, or the use 

of a local nonlinear or linear control law to determine a 

suitable terminal penalty and a terminal region (18-20). 

The terminal region constraint is added to enforce that if 

the open-loop optimal control problem is feasible once, 

that it will remain feasible, and to allow establishing the 

decrease using the terminal penalty (see (10, 18, 19, 21) 

for more details). In general, it is not necessary to find 

always an optimal solution in order to guarantee stability 	

(16, 19, 22). Only a feasible solution resulting in a 	

decrease in the value function is necessary. This can be 

utilized to decrease the necessary online solution time (8).	

	 3.3	Optimization Solvers

	 Although stability results for NMPC have 

been well established, it is not applicable in practical 	

implementation. Since a constrained nonlinear 	

optimization problem has to be solved online, the heavy 

online computational burden causes two important issues 

in implementation of NMPC (8). One is the computational 	

delay. The other is the global optimization solution which 

cannot be guaranteed in each optimization procedure 



816 KKU  Res. J. 2012;  17(5)

since it is, in general, a nonconvex, constrained nonlinear 

optimization problem. 

	 In practice, linear models are most often used 

and the resulting optimizations are linear or quadratic 

programs. In the nonlinear constrained optimization, the 

objective criterion is optimized directly by discretizing 

the original problem to finite dimensional approximation 	

(8). The discretized version of the optimal control 	

problem (OCP) can be solved with well known nonlinear 	

programming (NLP) algorithms, such as sequence 	

quadratic programming (SQP) (23, 24) or interior-point 

(IP) methods (25). For more details on optimization 

solvers, the reader is referred to (8, 23, 26).

4. Motion Control Using MPC

	 In Section 2 and 3, an overview of the theoretical 	

and practical aspects of MPC has shown some of the 

challenging issues. Although MPC is suitable for low-

process systems, such as chemical factories, with new 

optimization solvers, more powerful computers and more 

advanced MPC frameworks, MPC can be implemented 

in real-time applications, as seen in this section.

	 Recently, MPC strategies for path planning 

and local navigation have become increasingly popular 

in robotic research, but they are beyond the scope of 

this paper. In this paper, we focus on three criteria used 

to classify publications of motion control, i.e., MPC 

models, robot kinematic models, and basic motion tasks, 

as summarized in Table 1. Since an MPC algorithm 	

employs an explicit model of the plant (the plant here 

is a mobile robot) to be controlled which is used to 

predict the future output behavior, we review the 

three most popular kinematic models in the literature, 

i.e., unicycle-type vehicles, car-like vehicles, and 	

omnidirectional vehicles (27).

	 A unicycle-type vehicle, shown in Figure 2(a), 

has two identical parallel rear wheels, which are controlled 	

by two independent motors on the same axle and one 

caster wheel. It is assumed that the center of mass of the 	

mobile robot is located in the middle of the axis connecting 	

the rear wheels. Based on this wheel configuration, the 

following kinematic model of a unicycle-type mobile 

robot can be obtained:

	 		 	 (5)

	 where (x, y) indicates the position of the robot 

center in the world frame (X
w
, Y

w
) and θ is the heading 

angle of the robot. v and w stand for the linear and angular 

velocities, respectively. In (29), it is shown that the 

nonlinear, nonholonomic system [5] is fully controllable, 

i.e., it can be steered from any initial state to any final 

state in finite time by using finite inputs. Nonholonomic 

constraints mean the perfect rolling constraints without 

longitudinal or lateral slipping of the wheels. In the case 

of a trajectory-tracking controller, a linear time-varying 

system is obtained by approximate linearization around 

the trajectory. The linearization obtained is shown to be 

controllable as long as the trajectory does not come to 

stop, which implies that the system can be asymptotically 	

stabilized by smooth linear or nonlinear feedback. 	

Furthermore, due to Brockett’s theorem (29), the asymptotic 	

stabilization of a fixed point, where a position must be 

reached with a given orientation, is mainly achieved via 

discontinuous feedback and/or continuous time-varying 

feedback. An extensive review of nonholonomic control 

problems can be found in (30).
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Figure 2. (a) A unicycle mobile robot (12 cm diameter), and (b) coordinate frames of a unicycle mobile robot (28).

	 A car-like vehicle is shown in Figure 3(a). The 

robot is a rear-wheel-drive vehicle and its front wheels 

are used for steering. Based on Figure 3(b), the kinematic 

model is hence described as follows:

	 	 	 	 (6)

	 where (x, y) are the world reference frame 

coordinates, v is the forward velocity at the middle 

of the front axis, θ is yaw angle, ϕ is the front-wheel 

steering angle, and l is the distance between the wheels. 

The car-like robot is also a nonholonomic vehicle and it 

has a mechanical constraint, which imposes a maximum 	

curvature (or minimum turning radius) of the path 	

executed by the robot. Furthermore, for such a vehicle to 

move sideways requires a parking maneuver consisting 

of repeated changes in direction forward and backward. 

However, the limited maneuverability of car-like steering 	

has an important advantage, i.e., its directionality and 

steering geometry provide it with very good lateral 

stability in high-speed turns (27).

Figure 3. (a) A car-like mobile robot, and (b) coordinate frames of a car-like mobile robot.
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	 An omnidirectional vehicle, shown in Figure 

4(a), becomes increasingly popular in mobile robot 

applications, since they have some distinct advantages 

over nonholonomic mobile robots. They have a full 	

omnidirectionality with simultaneously and independently 	

controlled rotational and translational motion capabilities, 	

i.e., they can move at each instant in any direction 

without reorientation (31). The omnidirectional motion 	

is enabled via special wheels used in mobile robot 

design. One of the most popular arrangements utilizes 

so-called Swedish wheels mounted on the periphery of 

the chassis, thus allowing freedom of motion. Based on 

the basic architecture of the wheeled platform illustrated 

in Figure 4(b), the velocity component with respect to 

the world frame is obtained by

	 	 (7)

	 where the point (x, y) is the position of the 

center of the robot on the axes (X
w
, Y

w
) and θ is the 

angular position with respect to the axis X
w
. The input 

signals are given by u, v, ω with u, v being two orthogonal 

velocity vectors, where u is aligned with the reference 

axis of the robot. ω corresponds to the rotational 
velocity of the robot. 

Figure 4. (a) The structure of an omnidirectional mobile robot with Swedish wheels that contain a series of 

rollers attached to its circumference, and (b) coordinate frames of an omnidirectional mobile robot (32).

	 These robot kinematic models can be used 

directly with MPC, called nonlinear MPC (NMPC). 

However, we can reduce the complexity of the nonlinear 

model by the following three possibilities: 

	 •	 Linearization methods to linearize the 

nonlinear model into the linearized time-varying model;

	 •	 System identification techniques for linear 

GPC to approximate the nonlinear system;

	 •	 Neural network approaches to form neural 

network models.

	 The following three subsections are classified 

according to motion control tasks treated in the literature 

(2). Table 1 provides a summary of publications of motion 	

control according to our three classification criteria.
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	 4.1	Trajectory Tracking

	 Typically, trajectory tracking problems for 

mobile robots are solved by designing control laws that 

make the robots track given time varying trajectories, 

i.e., trajectories that specify the time evolution of the 

position, orientation, as well as the linear and angular 

velocities (59). However, this approach suffers from 

the drawback that usually the robots’ dynamics exhibit 

complex nonlinear terms and significant uncertainties, 

which make the task of computing a feasible trajectory 

difficult. Also, in the presence of tracking errors, the 

controller attempts to make the outputs catch up with 

the time-parameterized desired outputs. This may lead to 

too large control signals. One approach to eliminate such 

problems is to use a path following controller instead of 

a tracking controller, as explained in the next subsection.

	 In the field of mobile robotics, MPC 	

approaches to trajectory tracking seem to be very 

promising because the reference trajectory is known 

beforehand. In the literature, most MPC controllers use a 

linear model of mobile robot kinematics to predict future 

system outputs. Lages and Alves (33) used a successive 

linearization approach, yielding a linear, time-varying 

description of the system that can be controlled through 

linear MPC. Then, the optimization problem can be 

transformed into a QP problem and easily solved by 

numerically robust solvers, leading to global optimal 

solutions at each sampling time. An MPC trajectory 

tracking algorithm with a robot model that is linearized 

around the reference trajectory was also proposed by 

Klancar and Skrjanc (34). Their analytic control law 

is explicitly obtained without using any optimization 

solver, while the bounded velocity and acceleration 

constraints are considered in low-level control. Jiang et 

al. (35) presented a tracking method, where the predictive 

control is used to predict the position and the orientation 

of the robot and the fuzzy control is used to deal with 

the nonlinear characteristics of the system.

	 Seyr and Jakubek (36) solved a nonholonomic 

control problem consisting of NMPC in conjunction 

with kinematics of a unicycle-type mobile robot under 

consideration of side slip and tangential wheel slip. 

Based on a Gauss-Newton algorithm, predicted future 

position errors are minimized by numerical computation 	

of an optimal sequence of control inputs using 	

pre-specified shape functions. Hedjar et al. (37) presented 

a finite-horizon nonlinear predictive controller using the 

Taylor approximation. One of the main advantages of 

their control schemes is that they do not require on-line 

optimization and asymptotic tracking of the smooth 

reference signal is guaranteed. Gu and Hu (38) presented 

a stabilizing model predictive controller for tracking 	

control of a nonholonomic mobile robot. A terminal-state 

region and its corresponding local controller are developed 	

to guarantee the stability of controlled systems. The 

proposed model predictive controller can be used for 

simultaneous tracking control and point stabilization 

problems. Essen and Nijmeijer (39) developed an NMPC 

algorithm, which is applied to both problems of point 

stabilization and trajectory tracking. An application of 

their NMPC to the stabilization of a kinematic model 

of a unicycle-type mobile robot with input and state 	

constraints was studied. Xie and Fierro (40) proposed a 

first-state contractive model predictive control (FSC-MPC) 	

algorithm for the trajectory tracking and point stabilization 	

problems of nonholonomic mobile robots. Stability of 

the proposed MPC scheme is guaranteed by adding a 

first-state contractive constraint.

	 Araujo et al. (41) presented a methodology for 

state feedback MPC synthesis applied to the trajectory 	

tracking control problem of a three-wheeled 	

omnidirectional mobile robot. Closed loop system 	

stability is guaranteed by deriving LMI constraints for 

the monotonicity of the upper bound of the cost function. 

Chen and Li (42) enhanced computational efficiency 
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of Neural Network Predictive Control (NNPC) using 

Particle Swarm Optimization with Controllable Random 

Exploration Velocity (PSO-CREV) for searching optimal 

solutions so that NNPC can be used in the systems with 

rapid dynamics. Pan and Wang (43) proposed a recurrent 

neural network (RNN) approach to NMPC. By using 

decomposition, the original optimization associated with 

NMPC is reformulated as a QP problem with unknown 

parameters. To solve the QP problem, an improved dual 

neural network with less complexity is applied. Recently, 

Maurovic et al. (44) developed an explicit MPC scheme, 

where the solution to the MPC minimization problem 

can be calculated off-line and expressed as a piecewise 

affine function of the current state of a mobile robot, 

thus avoiding the need for online minimization. By 

obtaining such optimal controller, which has a form of 

a look-up table, there is no need for expensive and large 

computational infrastructure.

	 4.2	Path Following

	 Path following has recently been formulated 

to replace the standard trajectory tracking as it is more 

suitable for certain applications (59). As illustrated in 

(60), with path following, the time dependence of the 

problem is removed, smoother convergence to the path 

is achieved, and the control signals are less likely pushed 

into saturation when compared to trajectory tracking.

	 Path following problems (59) are primarily 

concerned with design of control laws that steer an object 

(robot arm, mobile robot, ship, aircraft, etc.) to reach and 

to follow a geometric path, i.e., a manifold parameterized 

by a continuous scalar s (called a geometric task), while 

a secondary goal is to force the object moving along the 

path to satisfy some additional dynamic specifications 	

(called a dynamic assignment task). This dynamic 	

behavior is further specified via time, speed, or acceleration 	

assignments (60). 

	 Ollero and Amidi (45) used GPC to solve 

the path following problem to obtain an appropriate 

steering angle taking into account the vehicle velocity. 	

A GPC approach using a Smith predictor to cope with 

an estimated system time delay was presented by 

Normey-Rico et al. (46). In (45, 46), it is assumed that 

the control acts only in the angular velocity, while the 

linear velocity is constant. Vougioukas (47) presented 

a reactive path tracking controller based on NMPC, 

along with an iterative gradient descent algorithm for its 

real-time implementation. In the presence of obstacles, 

the controller deviates from the reference trajectory by 

incorporating into the optimization obstacle-distance 

information from range sensors. Conceicao et al. (48) 

proposed a nonlinear model based predictive controller 

for an omnidirectional mobile robot. The optimization 

algorithms, mainly the methods based on conjugate 

gradients, present good times of minimization of the cost 

function, allowing its use in the predictive controller.

	 Falcone et al. (49) presented two approaches 

with different computational complexities for controlling 

an active front steering system in an autonomous vehicle. 

In the first approach, the MPC problem is formulated by 

using a nonlinear vehicle model. The second approach is 

based on successive online linearization of the vehicle 

model, resulting in a linear time-varying (LTV) system. 

Bak et al. (50) proposed a fast real-time receding horizon 

controller with velocity constraints to avoid excessive 

overshooting and to have time to decelerate when turning. 	

The presented controller is based on a strategy that 

forecasts the turning using a receding horizon approach 

where the controller predicts the posture of the robot and 

together with knowledge of an upcoming inter section 	

compensates the control signals. Raffo et al. (51) 

proposed a controller architecture considering both 

kinematic and dynamic control in a cascade structure. 

Two different MPCs are compared: 1) a state space 
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formulation based on the linearized kinematic model of 

the error between the real vehicle and a reference vehicle 

and 2) a GPC scheme based on a local linear model and 

approximation paths. They found that the GPC strategy 

presents better compromise between performance and 

computational complexity.

	 A neural network also helps to solve the 

optimization problem. Yang et al. (52) solved a path 

following problem by using a neural network model 

of a car-like robot to predict the future vehicle posture 

according to the current posture and control variables. 

The modeling errors are corrected by an on-line learning 

algorithm. Gomez-Ortega and Camacho (53) presented 

a neural network approach for mobile robot dynamics, 	

where a neutral network multilayer perceptron is trained 

to reproduce NMPC behaviors in a supervised manner. 	

Unexpected static obstacles present in the robot 	

environment are also considered in their implementation.	

Gu and Hu (54) presented a path tracking scheme for 

a car-like mobile robot based on neural predictive 

control, where a multi-layer back-propagation neural 

network is employed to model nonlinear kinematics of 

a mobile robot.

	 4.3	Point Stabilization (Parking, Regulation)

	 In point stabilization, a mobile robot should be 

moved from an arbitrary starting pose (i.e., position and 

orientation) and stabilized to a desired goal pose. The 

point stabilization is a hard task due to the existence of 

a nonholonomic constraint. Due to Brockett’s conditions 

(29), a continuously differentiable, smooth feedback 

control law cannot be used to stabilize a nonholonomic 

system at a given configuration. To overcome these 

limitations discontinuous (non-smooth) and time-varying 

control laws have been proposed.

	 Gu and Hu (38) developed a stabilizing receding 	

horizon controller with simultaneous tracking and 	

regulating capability. The switching between tracking 

control and regulation is not necessary. Alves and Lages 

(55) presented an MPC technique using polar coordinates 

to the problem of point stabilization of a nonholonomic 

mobile robot. Unlike the Cartesian coordinate counterpart, 	

the problem described in polar coordinates generates a 

feedback system with no steady state error. Kuhne et 

al. (56) also formulated a cost function of MPC in polar 

coordinates to solve a point stabilization problem for a 

nonholonomic wheeled mobile robot. Wei et al. (57) 

studied the problem of stabilizing WMRs subject to 

wheel slippage from an initial state to a final state. When 

slippage of the wheels occurs, WMRs can be modeled 	

as hybrid systems. Thus the hybrid optimal control 

can be formulated as a smooth MPC problem and thus 	

effectively solved using numerical methods.

5. Experimental Scenarios

	 In this section, we present three experimental 

scenarios from our previous work to show that MPC can 

be applied to real-time applications. The first experiment 

shows a comparison between trajectory tracking and path 

following of an omnidirectional mobile robot (32). The 

linearized model of an omnidirectional mobile robot 

is used in the second experiment (58). In this case, a 

time varying convex quadratic optimization problem is 	

formulated and solved at each time step, leading to the 	

reduction of the computational burden. The last experiment 	

compares trajectory tracking and path following of a 

unicycle-type mobile robot, including obstacle avoidance 

and a time-parameterized penalty (28).

	 5.1	Experiment 1: NMPC of an Omnidirec-

tional Mobile Robot

	 Two kinds of experiments were performed to 

test our proposed NMPC method for an omnidirectional 

mobile robot (32): One was path following control with 

a constant desired velocity of 1.0 m/s. Here, the desired 
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robot orientation was the path tangent direction. The 

other was trajectory tracking control, where the desired 

robot orientation was changing with respect to time. The 

following eight-shaped curve was selected as a reference 

because its geometrical symmetry and sharp changes in 

curvature make the test challenging:

	 (8)

	 where t is time in case of trajectory tracking, 

while this reference is numerically parameterized by the 

path variable s in case of the path following problem. 

For the path following problem, the error state vector x
e
 

can be defined as follows:

	 (9)

	 where [x, y, q, a]T is the desired state vector 

and [xd, yd, qd, ad]
T is the robot state vector. a and a

d
 

represent the moving direction of the robot and of the 

virtual vehicle, respectively. By using the error state and 

the kinematic model [7], the error state dynamic model 

with respect to the rotated coordinate frame becomes 

(32):

	 	 	 (10)

	 where K denotes the path curvature and u
r
 

refers to the forward velocity. The resulting model is 

used to predict the future output behavior of our MPC 

algorithm (32). Some vital parameters used in our ex-

periments were as follows: Q = diag(0.5,0.5,0.5), R = 

diag(0.1,0.1,0.1), δ = 0.07s, and prediction step = 3.

	 Figure 5 and Figure 6 illustrate results of 

trajectory tracking and path following experiments, 

respectively. However, the desired translation velocity 

remains constant in the path following problem, which 

increases difficulties in following the sharp turning part 

of the given path.

Figure 5. Experimental results of trajectory tracking control using NMPC.
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Figure 6. Experimental results of path following control using NMPC.

	 5.2	Experiment 2: A Linearized Version of 

MPC for an Omnidirectional Mobile Robot

	 One possibility to reduce computational time 

of solving nonlinear optimization problems is to use 	

linearization techniques. With the linearized time-varying 	

system, the optimization problem can be transformed 

into a QP problem. Since it turns into a convex problem,	

solving the QP problem results in global optimal 	

solutions. This linear MPC controller is computationally 	

effective and can be easily used in fast real-time 	

implementations. From Subsection 5.1, we linearized the 

error state dynamic model [10] around the reference path. 

We then obtain the following linear model:

	 	 	 (11)

	 where   is the 

reference curvature. The resulting model was 	

implemented into the QP problem with input constraints 

(58). Some important parameters used in our experiments 	

were given as follows: Q = diag(300,300,7,70), R = 

diag(1,0.001,3), δ = 0.05 s, and prediction step = 3. 

These parameters were different from those in Subsection 	

5.1 because the different problem formulation and the 

different solvers were employed in our implementation.

	 As seen in Figure 7, using the path [8] as a 

reference, we achieve a real-time implementation of our 

control law. The forward velocity decreased in order to 

preserve the curvature radius when the robot made sharp 

turns, while the velocity commands did not exceed the 

velocity constraints, as expected.
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Figure 7. Experimental results using the linear MPC law: (a) the superimposed snapshots, and (b) the forward 

velocity and the rotational velocity.

	 5.3	Experiment 3: NMPC of a Unicycle-type 

Robot

	 In this subsection, path following control 

and trajectory tracking control of a unicycle-type robot 

are compared. The advantage of the path following 	

controller is that the path following controller eliminates 

aggressiveness of the tracking controller by forcing 

convergence to the desired path in a smooth way. Thus, 

(a)

(b)
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we incorporated this benefit to the trajectory tracking 

problem to achieve smooth convergence to the reference 	

and to achieve time convergence of trajectory tracking. 

This was accomplished by modifying the cost function	

of the MPC framework through an addition of a time 

dependent penalty term. Based on this concept, our 

controller was able to optimize the reference point 	

between the virtual vehicle (path-parameterized) and the 

trajectory point (time-parameterized). Furthermore, in 

the presence of obstacles, the controller deviated from 

the reference by incorporating obstacle information from 

range sensors into the optimization, while respecting 	

motion constraints. Numerous simulations were 	

performed to evaluate performance of our system. The 

following circle was used as a reference path:

	 (12)

	 where R is the radius of the circle. Using [5] 

and the following error state vector x
e
:

	 (13)

	 where [x, y, θ]T is the robot state vector and 

[xd, yd, θd]
T is the desired state vector, the error state 

dynamic model for a unicycle-type robot with respect 

to the rotated coordinate frame becomes

	 	 	 (14)

	 where  is the path curvature. However, the 

robot’s translation velocity  has to be varied in order 

to achieve trajectory tracking. Thus, we introduced an 

acceleration control input a, where . Then, we 

obtained , where  and  is 

the desired translation velocity. In our implementation, 

some significant parameters were set as follows: Q = 

diag(0.2,2,0.01,0.01), R = diag(0.0001,0.0001,0.0001), 

prediction step = 3 and δ = 0.1 s. More details of our 

problem formulation and controller design can be found 

in (28). 

	 The performance achieved with pure path 	

following, pure trajectory tracking (see (38) for details), 

and for combined trajectory tracking and path following 

is assessed. Figure 8(a) and Figure 8(b) show simulation 

results of pure path following control and pure trajectory 

tracking control, respectively, with four different initial 

poses. The velocities of pure path following are depicted 

in Figure 9(a), while those of pure trajectory tracking 

are plotted in Figure 9(b) when the initial pose of both 

cases was set to (1.5,-0.5,π). As seen from the results, in 

case of path following control, the robot motions are less 	

aggressive while the robot is approaching the reference 

path (see Figure 8(a)) and the control signals are less likely 	

saturated. Figure 8(c) shows the simulation results of 

the combination of path following control and trajectory 	

tracking control. The velocities are shown in Figure 

9(c) when the initial pose was set to (1.5,-0.5,π). This 

controller is able to achieve both reference convergence 

and time convergence with smooth motions. As seen in 

the results, the robot converges smoothly to the desired 

path and then it reacts to achieve zero tracking error.

	 In Figure 10, two moving obstacles were 

present. The velocity of the first obstacle was 0.2 m/s at 

-135°, while the velocity of the second obstacle was 0.6 

m/s at 150°. In the simulation results, the robot moved 

backward to avoid the collision and waited until it was 

able to find a way to stay away from the obstacles and 

to follow the reference.

	 Next, a unicycle-type mobile robot, shown in 

Figure 2(a) was used in real-world experiments. The 

robot controller is an ATMEGA644 microprocessor with 

64 KB flash program memory, 16MHz clock frequency 
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and 4 KB SRAM. The localization was given by a camera 

looking down upon the robot’s workplace and a PC was 

used to compute the control inputs and then sent these 

inputs to the robot via WLAN. The same reference 

used in simulation was employed in this experiment. 

From experimental results shown in Figure 11, system 

performance degradation compared to the simulation 

results was mainly caused by time delay originated from 

computation time of the control algorithm, the vision-

based tracking system, and the wireless connection.

Figure 8. Simulation results with four different initial poses: (a) pure path following, (b) pure trajectory 

tracking, and (c) the combination of path following and trajectory tracking.

(a) (b)

(c)
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(a)

(b)

Figure 9. The robot velocities when the initial pose was set to (1.5, -0.5, π): (a) pure path following, (b) pure 

trajectory tracking, and (c) the combination of path following and trajectory tracking.
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(c)

Figure 9. The robot velocities when the initial pose was set to (1.5, -0.5, π): (a) pure path following, (b) pure 

trajectory tracking, and (c) the combination of path following and trajectory tracking. (cont.)

Figure 10. The simulation results when two moving polygonal obstacles were present.
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(a)

(b)

Figure 11. Experimental results using our NMPC law: (a) the robot positions and its reference, and (b) the 

robot’s velocities.
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6. Future Research Perspectives

	 The topics listed here are not intended to be 

exhaustive, but rather to be indicative of the classes of 

problems which we are interested in.

	 6.1	Decentralized MPC

	 Formation control is one of the most active 

research topics in multi-robot systems (61). The goal of 

formation control is that a group of robots has to maintain 

a desired formation shape, while tracking or following a 

reference. One way to solve this problem is to formulate 

it as a centralized MPC scheme, i.e., one MPC controller 	

has the full knowledge about the entire robot system and 

computes all the control inputs for the entire robot system. 	

However, in general, the centralized implementation 	

is not practical since the size of the state variables 

depends typically on the number of mobile robots. 

When the control horizon becomes larger, the number 

of variables, of which the robot has to find the value, 

increases rapidly. Also, the demands of computational 	

power and memory are daunting for the real-time solution 	

of systems with a large control horizon and a large 

number of mobile robots. Thus, the research has led 

to decomposing the centralized system into smaller 

subsystems, which are independently controlled in the 

MPC framework. 

	 The main challenge is that stability and feasibility 	

of decentralized schemes are very difficult to prove 

and/or too conservative (62). Even if we assume T
p
 to 

be infinite, the decentralized MPC approach does not 

guarantee that solutions computed locally are globally 

feasible and stable. The decentralization of the control 

is further complicated when disturbances act on the 

subsystems making the prediction of future behavior 

uncertain. The key point to guarantee feasibility and 	

stability is that when decisions are made in a decentralized 	

fashion, the actions of each subsystem must be consistent 

with those of the other subsystems (63). Thus, decisions 

taken independently do not lead to a violation of the 

coupling constraints. Some approaches based on this 

strategy were proposed by Dunbar and Murray (64), and 

Kanjanawanishkul and Zell (65), and references therein.

	 6.2	An Improved Real-time MPC Frame-

work

	 As shown in our experimental scenarios, the 

MPC framework can be used beyond process control. 

However, the main obstacle in applying the MPC 

technology to real-time applications, e.g., WMRs is 

that the optimization problem is computationally quite 

demanding, especially for nonlinear systems. In order 

to reduce the online computational requirements, there 

are a number of directions in which future research on 

this problem can proceed. The first direction is to apply 

function approximations, e.g., artificial neural networks, 

which can be trained off-line to represent the optimal 

control law. Second, explicit MPC techniques, such 

as multi-parametric quadratic programming (mp-QP) 

approaches, may be employed since they can handle 

constrained MIMO linear models as well as constrained 

MIMO piecewise linear models (66), where part of the 

computations are performed off-line. The third direction 

to reduce the online computational requirements relates 

to open-loop optimization solvers. We should improve 

and test several nonlinear optimization algorithms which 

can enlarge the range of conditions for which a nonlinear 

MPC controller becomes real-time implementable.

7. Conclusions

	 The main objective of this paper is to review 

MPC schemes that are applied to motion control tasks 

of WMRs. We classify publications based on three 

criteria, i.e., MPC models, robot kinematic models, and 

motion tasks, as seen in Table 1. With the development 
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of increasingly faster processors and efficient numerical 	

algorithms, the use of an MPC controller in faster 	

applications (e.g., WMRs) becomes possible. Successful 	

real-time motion tasks of WMRs have already been 

shown in Section 5. Furthermore, the comparison 

between path following and trajectory tracking for an 

omnidirectional mobile robot and a unicycle-type mobile 

robot has also been shown and discussed.

	 Although MPC approaches of WMRs have 

been particularly well studied, as seen in our survey, 

much work remains to be done to develop strategies 

capable of yielding better performance in case of mobile 

robots with parameter uncertainties, partially-known or 

unknown environments, and multi-robot cooperation.
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