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Abstract

One of the main challenges of cellulosic bio-ethanol production is the cellulase enzyme. Cellulase is used in the
hydrolysis of cellulose to sugars for the fermentation of bio-ethanol, but the commercial cellulase enzyme preparations
are very expensive. This study has attempted to use peanut hulls as a substrate for cellulase production via solid-state
fermentation (SSF) by white-rot fungus, Ganoderma australe. The effects of moisture content, culture temperature and
initial pH value on cellulase biosynthesis were observed for optimal production in flask fermentors. The activities of
different cellulase enzymes, namely filter paper activity (FPAse), carboxymethyl cellulase (CMCase) and B-Glucosi-
dase (cellobiase) were carried out using filter paper, carboxymethylcellulose and cellobiose as the substrate, repectively.
The optimal FPAse activity (0.06210.017 1U/ml), CMCase activity (0.42610.074 1U/ml) and cellobiase activity
(0.035£0.007 IU/ml), were obtained after 9 days of cultivation with an initial 70% of moisture content, a temperature of
25°C and an initial pH of 5.5. These results suggest that the crude cellulase production under SSF using peanut hulls as

a substrate could be an alternative choice for commercial enzyme preparations.
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1. Introduction

In the context of green energy, one of the main
challenges of cellulosic bio-ethanol production is the
cellulase enzyme itself, which is used in the hydrolysis of
cellulose to fermentable sugars for bio-ethanol production.
The bioconversion of cellulose to fermentable sugars
requires the synergistic action of the complete cellulase
system, comprised of endoglucanases (EC 3.2.1.4),
exoglucanases (cellobiohydrolases; EC 3.2.1.91) and B
glucosidases or cellobiase (EC 3.2.1.21) (1-3). However,

production cost of the enzymes is very high and accounts
for about 40-60% of the total production cost (4). In recent
years, research efforts have been focused on lowering the
cost of the enzymes. The use of agro-industrial waste and
its byproducts as substrates in solid-state fermentation
(SSF) is one of the alternative choices in reducing cellu-
lase costs (5). The SSF process obtained higher yields in
a shorter time period than the submerged fermentation
(SmF) applications (6). Chahal et al. (7) had reported a
higher yield of cellulase from Trichoderma reesei in SSF

cultures, compared to SmF. Tengerdy et al. (8) compared
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cellulase production in SmF and SSF systems and had
indicated that there was about a 10-fold reduction in the
production cost when SSF is employed for production.
SSF are strongly recommended in systems for producing
cellulase at a lower price, over SmF (9). There are several
reports that have described the use of agro-industrial wastes
for cellulase production, but there have still been very few
reports on the utilization of peanut hulls. In Thailand,
peanut hulls are by-products in the peanut processing
industry and are abundant sources of less expensive forms
of biomass (10). There have been no specific reports on
cellulase production from peanut hulls. From this point of
view, we developed a method for utilizing peanut hulls as
a substrate for producing cellulase by white rot fungus.
Ganoderma australe which was isolated and identified by
our laboratory (11). This is the first report on production of
cellulase enzymes by G. australe from peanut hulls.

The aim of the present study was to optimize various
factors, including the level of moisture content, initial pH
and temperature, for the maximum yield of cellulase in
SSF using peanut hulls as a substrate, which is considered

a value-added bio-product.

2. Materials and Methods

2.1 Microorganisms

The fungal strain, G. australe was isolated and
identified by our laboratory and was cultivated on potato
dextrose agar (PDA) plates containing 2.0% agar and
incubated at ambient temperatures for 7 days.
2.2 Detection of microbial cellulase on agar plate

A preliminary qualitative analysis for cellulolytic
activity was conducted using Congo red dye (12).
G. australe was grown on CMC agar containing (0.2%
NaNO}, 0.1% KzHPO4’ 0.05% MgSO4, 0.05% KCl, 0.2%
carboxymethyl cellulose (CMC) sodium salt, 0.02%
peptone, and 1.7% agar). Plates were incubated at

ambient temperatures for 3 days. The agar medium was
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flooded with 0.1% Congo red dye for 15 to 20 minutes, and
then de-stained with 1M NaCl for 15 minutes. The formation
of a clear zone of hydrolysis indicated cellulose degradation.
2.3 Substrates and pretreatment

Peanut hulls used in this experiment were obtained
from a local market in Chiang Mai. These materials were
dried overnight in a hot air oven (60°C) before being finely
crushed and stored in air-tight containers. The pretreatment
of peanut hulls was then carried out separately by treating
them with 0.5% (w/v) HZSO4 and 2.5% NaOH at 121°C
for 15 min. The pretreated residues were washed exten-
sively to the neutral pH (7.0) level and dried at 60°C in the
oven.

2.4 Fiber analysis

To determine the lignocellulosic composition of
peanut hulls, the cellulose, hemicellulose and lignin content
were routinely established using the neutral detergent
fiber (NDF), acid detergent fiber (ADF) and acid
detergent lignin (ADL), and then were analyzed by the
method of Van Soest et al. (13). Cellulose content was
estimated as the difference between ADF and ADL,
hemicellulose content was estimated as being between
NDF and ADF, and lignin content was estimated as the
difference between ADL and the ash.

The components that were estimated by these tests is
summarized below:

NDF = lignin and Acid Insoluble Ash + cellulose +
hemicellulose

ADF = lignin and Acid Insoluble Ash + cellulose

ADL = lignin and Acid Insoluble Ash

2.5 Optimization of cellulase production under solid
state fermentation (SSF)

Solid state fermentation was carried out in 250 ml
erlenmeyer flasks, each having 2.0 g of dried pretreated
peanut residue. The initial moisture was adjusted to 60,
70, 80 and 90% with the mineral salt solution [(NH4)ZSO4,
0.5gl" ;KH PO, 0.5 gl MgSO,, 0.5 gl" and pH 5.5].
The flasks were sterilized by autoclaving at 121°C (15
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psi), and allowed to cool at room temperature. Inoculation
was performed using a sterile cork borer, in 7-day old
mycelium agar disc (diameter, 0.6 cm.) and incubated at
25°C in an incubator for 12 days. The maximum levels of
enzyme production were selected for further optimization
of the SSF production process.

2.5.1 Optimization of fermentation time period and
moisture content

To optimize conditions for fermentation, flasks
containing 2.0 g of dried pretreated peanut residue were
used with various levels of moisture content (60, 70, 80
and 90%), and periods of fermentation time (3, 6,9 and 12
days). Other factors were constant at the initial pH value
of 5.5, with a fermentation temperature of 25°C. Fermented
products were harvested in triplicate at the specified
fermentation times and analyzed for cellulase activities.

2.5.2 Optimization of temperature and initial pH

To determine the optimum temperature, triplicate
flasks containing 2.0 g of dried pretreated peanut residue
were adjusted to a constant initial pH value of 7.0, inoculated
and subjected to fermentation at varying temperatures (20,
25 and 30°C). To investigate the effects of the initial pH
value on enzyme production, pH values were varied (5.0,
5.5,6.0,6.5,7.0 and 7.5) with inoculation and fermentation
being performed at 25°C for a specified time period of
9 days.
2.6 Enzyme extraction

The enzymes were extracted by adding 15 ml of
50 mM citrate buffer (pH 4.8) to the solid state cultures
and the contents were shaken on a rotary shaker at 150
rpm for 60 min at room temperature. The contents in the
flasks were then filtered through a metallic sieve and the
solid residue was pressed to remove any remaining liquid,
followed by centrifugation (10000 x g for 15 min at 4°C).
The supernatant was saved and analyzed for its enzyme
activities.
2.7 Enzyme activity assays

Samples were collected every 3 days during the
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fermentation process for the determination of cellulase
activity (Filter paper activity (FPAse), carboxylmethyl
cellulase (CMCase) and cellobiase) according to standard
IUPAC procedures and were then expressed as interna-
tional units (IU) by Ghose (14). Filter paper activity (FPase)
was assayed by measuring the release of reducing sugars
in a reaction mixture of Whatman’s No. 1 filter paper (1.0
x 6.0 cm.) as a substrate in 50 mM sodium citrate buffer
(pH 4.8) at 50°C, after 60-min of incubation. Carboxym-
ethyl cellulase (CMCase) activity was assayed by
measuring the release of reducing sugars in a reaction
mixture containing 0.5 ml of crude enzyme and 0.5 ml of
2% (w/v) of CMC (Sigma) solution in 50 mM sodium
citrate buffer (pH 4.8) incubated at 50°C for a period of
30 min. The liberated reducing sugars were measured
using 3,5-dinitrosalicylic acid (DNS), according to the
method of Miller (15). One international unit of FPAse
and CMCase activity is the amount of enzyme that
releases 1 pmol of glucose per min during the hydrolysis
reaction. Cellobiase activity was determined using 15 mM
cellobiose (Fluka) at 50°C after 30 min of incubation. One
international unit of cellobiase activity is the amount of
enzyme that forms 2 Wmol of glucose per min from
cellobiose. The values of enzymatic activity were
expressed as U/ml.
2.8 Data analysis

Lignocellulosic composition and the enzyme
activity values are expressed as the mean £S.D. of three

replications calculated using MS Excel 2007.

3. Results and Discussion

3.1 Detection of microbial cellulase on agar plate

The fungal strain, G. australe was grown on CMC
agar plates and checked for the cellulolytic activity by
incubation at ambient temperatures for 3 days. The cellulase
activity was indicated as a clear orange halo after being

stained with 1% Congo red solution. G. australe showed a
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clear zone with a diameter of 17 mm. This result indicated
that G. australe had the potential to produce cellulolytic
enzymes.
3.2 Fiber analysis

Table 1. shows the linocellulosic composition as
NDF, ADF, and ADL, cellulose, hemicellulose, and
lignin content of each composition before and after
pretreatment of peanut hulls. Cellulose content in untreated
peanut hulls and pretreated peanut residue were 38.7%
and 33.8%, respectively. The acid-base pretreatment
significantly hydrolyzed the hemicellulose and lignin
contents by decreasing their percent values from 22.7 and

20.6 percent, to 7.8 and 8.6 percent, respectively.
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3.3 Optimization of cellulase production under solid
state fermentation (SSF)

In the present study, maximum enzyme production
occurred 9 days of G. australe was best suited for FPase
and CMCase revealing the yields 0.048%0.005 U/mL and
0.38210.033 U/mL as depicted in Figure 2-3, and
cellobiase yields of 0.02810.005 U/mL (Figure 4) was
observed with an initial 70% of moisture content. On
further incubation, the enzyme yields declined gradually
at the end of 12 days It might be due to the depletion of
nutritions, accumulation of harmful by-products in the culture
medium and proteolysis of enzyme. This finding is in
accordance to the finding of Tsao et a/. (16). During SSF,

both high and low moisture contents affect enzyme

activity (17).
Table 1. Lignocellulose composition of peanut hulls.
Sample Untreated Peanut hulls Pretreated-Peanut residue
%NDF 82.020710.5001 50.253312.6880
% ADF 59.339210.7176 42.4677£1.5874

% Hemicellulose

% Cellulose

% Lignin

% Acid Insoluble Ash

22.681510.9420
38.723010.8968
20.616210.660
1.291110.4888

7.7856%2.5270
33.8184%1.5723
8.649311.9386
1.1424%0.0631

Figure 1.

Ganoderma australe showed a clear zone of hydrolysis, which indicates CMC degradation.
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Figure 2. Fermentation time profiles of filter paper cellulase (FPAse) activity of peanut hulls.
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Figure 3. Fermentation time profiles of carboxymethyl cellulase (CMCase) activity of peanut hulls.
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Figure 4. Fermentation time profiles of cellobiase activity of peanut hulls.
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The temperature of the fermentation medium is
one of the parameters that has a significant influence on
the end product. Figure 5 illustrates that the enzyme activity
increased with an initial increase in temperature to 25°C.
When cultivated at 30°C, the activity of the enzymes
decreased substantially. The highest yields of FPase
(0.054%0.013 U/mL), CMCase (0.415%0.057 U/mL) and
cellobiase (0.02910.004 U/mL) were obtained at 25°C on
Day 9, whereas the enzyme yield was reduced to
0.033%0.011, 0.372%0.031 and 0.023%0.003 U/mL,
respectively, at 30°C of incubation with a significant
reduction in the cellulase activity. It is a well-known fact

that higher temperatures (above 30°C) alter the cell

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

® Fpase
w CMCase

m Cellobiase

Cellulase activity (U/ml)

20

%
Temperature ('C)

KKU Res. J. 2014; 19(Supplement Issue)

membrane composition and stimulate protein catabolism,
causing cell death (18).

To study the effect of initial pH on cellulase
production, the pH value of the moistening agent was
adjusted to between 5.0 and 7.5. The production profiles
of all the three components, as shown in (Figure 6), depict
the highest FPase (0.062%0.017 U/mL), CMCase
(0.42610.074 U/mL) and cellobiase (0.03530.007 U/mL)
were observed at a pH value of 5.5. Any variation from
this optimal pH value resulted in reduced enzyme activity.
This might be due to the fact that cultivation of fungi at an
unfavourable pH value may result in reduced enzyme

activities by reducing accessibility of the substrate (19).

30

Figure 5. Cellulase activities at varying temperatures.

0.6 -
i m Fpase
05 1 m CMCase

m Cellobiase

04
03

02 -

Cellulase activity (U/ml)

0.1

8
Initial pH

6.5 7. 7.5

Figure 6. Cellulase activities at different pH levels.
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4. Discussions

In this investigation, we studied the potential of
utilizing peanut hulls as substrate for cellulase production
under SSF by G. australe isolated and identified by our
laboratory The use of abundantly available and cost-ef-
fective agro-industrial waste residues that were once
considered useless, are presently being recognized as a
potential raw material in achieving higher cellulase yields
and reducing the overall cost of enzyme production (20).
Cellulase production under SSF is gaining considerable
interest because it is a cost effective form of technology
that has been suggested to be capable of reducing production
costs by 10 fold and has the ability to provide much higher
yields, when compared to the submerged fermentation
method (8,21). The present study demonstrated that the
peanut residue could provided the maximum levels of
cellulase, with yields of 0.062£0.017, 0.42610.074, and
0.035%0.007 1U/ml for FPase, CMCase and cellobiase,
respectively, after 9 days of cultivation with an initial 70%
moisture content and an initial pH value of 5.5. The
production of CMCase was always higher than FPase,
and this phenomenon is in accordance with other reported
findings (22-26). In the case of cellobiase, from Fig.4, it is
obvious that cellobiase activity was the lowest. There
were no significant differences for days 9 and 12. When
cellobiase secretion is low, cellobiose accumulates
instead of glucose (27). Cellobiose accumulation acts as a
feedback inhibitor of cellulose depolymerization by endo
and exoglucanases (28-29) which is a critical factor in the
industrial scale conversion of cellulose to glucose. A study
of'the time course is of prime importance for the cellulase
synthesis of fungi, the maximum enzyme production
occurred at 9 days with the highest yields. In a similar
study for cellulase production by T. reesei, cellulase yields
remained fairly constant over the 3-5 days of fermentation,
with a maximum yield observed at Day 4 (30). Some

factors like moisture content is essential for microbial
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metabolism, and its depletion affects the diffusion of the
solute, and the osmotic change (31). During SSF, both
high and low moisture contents affect enzyme productivity.
Furthermore, the effect of pH value on cellulase production
was studied and it was found that the acidic pH range of
5.5 was optimal for enzyme production. The enzyme
activity increased to the maximum level, followed by a
slight decrease in activity. Das et al. (32) also observed
that cellulase activity was optimum at a pH value of 4.8.
The variation of pH from the optimum level causes dena-
turation of the enzymes and reduces enzyme synthesis
ability. In a similar study by Dinis ez a/. (33) the production
of ligninolytic enzymes during wheat straw its activity
was very high, comparatively with CMCase. There were
no significant differences for days 7, 14 and 21 and the
maximum value observed was on Trametes versicolor on
day 28 (0.03 U/ml). In the case of CMCase activity the
most active producer appeared to be Ganoderma
applanatum, with a maximum value (0.13 U/ml) on day
14, while in Trametes versicolor (0.07 U/ml), Phlebia
rufa (0.06 U/ml) and Bjerkandera adusta (0.02 U/ml) was
observed on day 7 While all fungi produced FPase activity

was very low, comparatively with CMCase.

5. Conclusion

Successful attempts have been made to utilize
peanut hulls, a highly abundant form of agro-industrial
waste, as a substrate for the production of cellulase complex
by G. australe under SSF, in order to develop a low cost
production system. Fairly good amounts of FPase,
CMCase, and cellobiase were obtained. This process
highlighted the potential of these raw materials for
enzyme production, thereby reducing the cost of cellulase
production. Further utilization, in terms of novel inducer
and scale up studies, need to be carried out in order to
exploit these inexpensively produced commercial cellulase

enzyme preparations in the second-generation biofuel
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production process.
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