
739KKU Res. J. 2013; 18(5)

The Effective Selection Model for the Process of Test Case Selection

Adtha Lawanna1

1 Lecturer, Department of Information Technology, Faculty of Science and Technology, Assumption University, Bangkok 10240, Thailand.
* Correspondent author: adtha@scitech.au.edu

Abstract

 This article presents the effective selection model for choosing the small numbers of test cases,

relying on the concept of software testing. Currently, the traditional models that are the random and regression test

selection are being used in the process of software testing. These models can create the test suite that contains the

set of test cases. The test cases are used to fi x bugs before deploying the new software version to the users. The

main problem is the size of test cases.This can increase programming times, including in the new software may

produce any error, which can fail the entire software system. Therefore, this paper offers the alternative techniques

to improve the ability of design test suite and select the small numbers of test cases, while avoiding the fault is

also considered. The algorithm of determining function modifi ed, lines of code changes are created. Moreover, the

algorithm of fi nding test suite and test cases are explained in details. For instance, numbers of the selected test case

in tcas program by using random, regression selection and the proposed model are 266, 208, and 184 respectively.

According to this, the proposed model gives the smallest size of a test suite compared with the traditional model.

Keywords : regression test selection, software testing, test suite, and test case.

KKU Res. J. 2013; 18(5): 739-748
http : //resjournal.kku.ac.th

1. Introduction

 The software-development life cycle (SDLC)

is one of the parts for creating the program. SDLC

comprises getting requirement, analysis, design, coding,

testing, and maintenance into the whole processes (1).

 Getting requirement involves collecting the

needs of users before the entire development starts. The

team uses the requirement for producing the functions

(F) inside the program.

 After this, the analysis is prepared in order to

identify the related problems with the set of solutions.

Software analysis is a process of designing a program

by equating pattern or abstract processes relevant to the

workings of the software being developed. The method

is to compare some type of the abstract processes that

work effectively in some function, and then use the same

logic and the terminology of the pattern to the software

being created (2).

 Next, software design is a method of providing

a software solution. After the objective and requirements

of the program are determined, programmers will

prepare or employ designers to build a plan for a software

solution. It combines the algorithm implementation

740 KKU Res. J. 2013; 18(5)

problems as well as the overview of the architectural

software system.

 Coding is the next process in SDLC, it concerns

many facets of developing program and, while they do

not affect the functionality of the request, they give the

improved ability of source code. For the determination

of this section, all lines of code (L) are considered.

 Then, software testing is applied for checking

reliability of the program.It is the process of executing

software or the entire system with the intent of

discovering reliability. Particularly, it focusses the

activities aimed at evaluating an attribute of a program

and defi ning that it meets its vital results. Software is

different from other physical practices where inputs are

established and outputs are formed (3).

 Following this, software maintenance is

provided. It is the process of modifying a software

product after deployment, e.g., fi xing bugs, improving

performance and other product attributes, or adapting

the product to a new version as well as changing

environment.

 The selection of test cases (TC) for regression

testing, it requires the knowledge of fixing bugs

fi xes and how it affects the whole software system (4).

Particularly, it involves the space of frequent faults, and

the extent which has undergone many or recent lines of

code changes (5). The mandatory requirements of the

user selection of test cases for the methods of regression

testing depends more on fi xing bugs than the defect itself.

Moreover, a minor defect can produce the major side

effect and a bug fi x for an extreme defect can have no a

minor side effect. Therefore, the test engineer requires

balancing these characteristics for choosing the test cases

for regression testing (6).The process of selecting the test

cases is shown in Figure 1.

 Step 1: Retrieving and analyzing the program.

 This is the fi rst step in the process of selection.A

test suite will be designed relying on the functions, lines

of code and detecting faults, and the modifi ed program.

 Step 2: Defi ning test case.

 A set of test case can be defined by two

activities. First, it can be done manually by developers.

Second, using test case generator creates the test cases

automatically.

 Step 3: Selecting test case.

 The set of test cases are selected from the

test suite of the modifi ed program. In this step, many

techniques are applied, e.g., retest all, random, regression

test selection, minimization, prioritization, and others.

 Step 4: Testing the new program.

 This step can be done due to the concept of

software testing. The main objective is to check and to

fi x bugs in the lines of code change, while some functions

in the program are modifi ed. If bugs are found in some

test cases, then that test cases need to be reintroduced

until the bugs are removed. But the test cases without

bugs will be considered for the selection process.

741KKU Res. J. 2013; 18(5)

Figure 1. The process of the test cases selection

 When a new version of software is released to

the users, the programmers need to perform a full run of

all the existing test cases. According to this, it is very

time consuming. The question, it is possible or not to

determine the modifi ed parts of the code base and then

execute the test cases related to those parts. However,

the regression test is affected by those lines of code and

functions modifi ed (7).

 Regression testing is denoted as rerunning test

cases from existing test suites (TS) to build confi dence

that software changes have no unplanned side-effects.

In general, the process is to create the test suite and run

it after every single change (8). Unluckily, for numerous

developments this is just incredible because test

suites are huge, since the changes arise too fast and

manyhumans are involved in the testing loop, and highly

requirements of simulation laboratories are requested (9).

In addition, testing must be completed on many different

hardware and operating system platforms.Particularly,

the regression testing supports the constancy of the

changed program by discovering errors in the modifi ed

software, and confi rming the continued operation of the

new version. This method is a costly and uses signifi cant

expenses of resources. During the method, an already

given test suite is available for reprocess.

 A regression test selection technique can be

applied to select an appropriate number of test cases from

the given test suite. The simplest and oldest technique

is to run all test cases (AT)in the modifi ed source code.

This is the useful technique, but it is not practical when

the size of a test suite is too large. Therefore, we may

choose a set of the test cases by random technique (RT)

to decrease the size of the designed test suite. However,

many test cases selected by this technique may not be

relevant to the modifi ed program. Another technique

is called regression test section (RTS) proposes the

selection of test cases that perform the changed portions

of the software.

 This paper focuses Rothermel and Harrold’s

regression test selection tool because their results are

better than retest-all selection and random/ad-hoc

selection. This technique constructs the control fl ow

graphs for a program or procedure and its modifi ed

program and uses the fl ow graphs to select test cases

that execute modifi ed code from the original test suite.

They describe that, under certain conditions, the set of

test cases their technique selects includes every test case

from the original test suite that can expose faults in the

modifi ed program or procedure. Particularly, although

their algorithms may choose some test case that cannot

742 KKU Res. J. 2013; 18(5)

expose faults, they are at least as accurate as other safe

regression test selection techniques. Unlike many other

regression test selection techniques, their algorithms

can handle all types of program modifi cations and all

language constructs. They have implemented their

algorithms; initial empirical studies prove that their

technique can signifi cantly reduce the cost of regression

testing modifi ed program (10).

 Particularly, the portions can be affected by

these modifi cations(11). These test cases are known as

modifi cation enlightening test cases. According to this,

those test cases that reveal bugs in the modifi ed software

are known as fault enlightening test cases. Unfortunately,

there is no effi cient selection technique to discover fault

enlightening. We may also specify the preference with

which a test case may be prepared during the process

of regression testing(12). Mostly, a noble process of

software testing depends on the techniques of test case

selection. Accordingly, the small size of the test cases

can be studied without time consuming. Therefore, the

effective test case generator needs to be used very in

order by the development team. This is because, the

functions modified and lines of code changes can

affect the capability of the new software version,

whereas the bugs are produced. Hence, not only the

small size is required, but the percent faultless should

be protected. Moreover, the test team should work

collaboratively through the whole process of the

software-development life cycle, particularly in each

step of software testing.This article focuses the part of

software testing(13),because there are many researchers

proposed to improve the capabilities of the software,

including the program modifi cation. Those techniques

also present the methods of designing test suite of the

software, which contain large amounts of test cases. This

causes the testing time and cost increase(14). Although,

the techniques of test case selection are created for

solving these problems,but the new issue is produced that

is the rising of bugs in the new software version after

modifying the source code(15).So, this paper proposes

the effective selection methods (ESM) to solve the

problems mentioned above. The expected contributions

of this research are selecting the smaller amounts of test

cases thanthe traditional technique.

2. Materials and Methods

 This section explains the subject program sued

for doing experiments and the methods of selecting the

test case in detail.

 2.1 The subject programs

 The subject programs as shown in Table 1

are written in C language developed by the developers

of the Siemens suite of programs with manually fi xing

bugs or faults(16) . These programs are preferred

because of the development of the related artifacts as

well as the historical signifi cance. Numerous high quality

experimental software engineering researchers have

used the Siemens suite (11). Table 2 is the example of

modifying 10 versions of print-token2 program. In

version 1, there are fi ve functions that were modifi ed

and 120 lines of code are changed. Likewise, all

programs have their own records, which are used in the

experiments.

743KKU Res. J. 2013; 18(5)

Table 1. The seven subject programs

Programname numbers of functions lines of code number of version test suite

replace 21 516 32 5542

print_token 18 402 7 4130

print_token2 19 483 10 4115

schedule2 16 297 10 2710

schedule 18 299 9 2650

totinfo 7 346 23 1054

tcas 9 138 41 1608

Note: the experiment is provided for determining a test suite for the next software version.

Table 2. The example of modifying ten versions of print-token2

version functions modifi ed lines of code changed

1 5 120

2 14 153

3 13 185

4 9 127

5 18 166

6 9 170

7 19 164

8 13 190

9 19 101

10 2 191

 2.2 The proposed model

 This section describes the details of

determining the selected test cases. The proposed

 methodology is called the effective selection model

(ESM). There are four steps explained as follows;

 Step 1: Determine the functions modifi ed.

 If FM ∞ F

 then FM = βF (1)

 or β = (2)

 else if FM ∝ / / ∝ refers to “varied” (3)

 then FM = θ (4)

 EndIf

 where

 FM is the functions modifi ed.

 F is the number of functions.

 C is the lines of code.

 β is the estimated constant value, whereas

FMis varied by C.

 θ is the estimated constant value, whereas

FM is undirected to C. This value is important C has

not changed.

744 KKU Res. J. 2013; 18(5)

 Step 2: Createthelines of code change.

 If LC ∝ C

 then LC = ωC (5)

 or ω = (6)

 elseif LC ∝

 then LC = σ (7)

 EndIf

 where

 LC is the lines of code changed.

 ω is the estimated constant value, whereas

LC is varied by C.

 σ is the estimated constant value, whereas

LC is undirected to C. This value C has not changed.

 Step 3: Buildthe test suit.

 If V ∝ FM

 then V = λFM (8)

 esleif TS ∝ LC

 then TS = λLC (9)

 elseIf TS ∝

 then TS = μ (10)

 EndIf

 where

 V is the faulty versions.

 TS is the test suite.

 λ is the estimated constant value, whereas

V is varied by FM.

 μ is the estimated constant value, whereas

TS is varied by LC. This value is necessary, whereas

FM does not exist.

 Step 4: Select the test cases.

 If TC ∝ TS

 then TC = κTS (11)

 elseif TC ∝

 then TC = Ø (12)

 EndIf

 where

 TC is the selected test case.

 κ is the estimated constantvalue of selecting

test case.

 Ø is the estimated constant value, whereas

TC is undirected to TS. The value of Ø will be applicable

when the selected test case are very small (e.g., 2-3).

Using this model, the value of Ø is invalid. Therefore,

it is not mentioned in the results.

3. Results and Discussions

 The experiments are set and tested to predict

the value of function modifi ed, the lines of code change,

and selected test cases for the next version of each

program. The records in this section are useful for the

programmers to get the guidelines to make a good plan

to modify the software. According to the algorithm in

Step 1, the value of β and FM can be computed. For

example, there are 19 functions in print-token2 and the

versions are modifi ed for ten times. Then the software

version 11 comprises two functions modifi ed, while β

equals 0.1. All results are shown in Table 3.

Table 3. The results of determining β and FM

program name F FM β

replace 21 2 0.1

print_token 18 7 0.39

print_token2 19 6 0.32

schedule2 16 8 0.5

schedule 18 9 0.5

totinfo 7 6 0.86

tcas 9 6 0.67

 The objective of finding β is to predict

function modifi ed for the next generation. In part of

fi nding θ is not shown, this is because it does not relate

to the functions in each program, including the results

are consistency. However, this value will be applied,

745KKU Res. J. 2013; 18(5)

whereas the lines of code are very short with none of

the bugs. After this, is to measure the changes in the

source code by 100 experiments. The values of ω that

are shown in Table 3can be applied in order to fi nd the

value of LC, while σ gives the negative because most of

the codes are changed.The value of σ is not determined

because it doesn’t affect this situation.

Table 4. The results of fi nding ω and LC

program name C LC ω

replace 516 249 0.48

print_token 402 176 0.44

print_token2 483 161 0.33

schedule2 297 127 0.43

schedule 299 80 0.27

totinfo 346 41 0.12

tcas 138 118 0.86

 In addition, using these results can help the

programmers to check bugs easier than the entire lines

of code. Next step is to provide the value of λ for

constructing the test suite, as shown in Table 5. On the

other hand, the values of μ are not recorded because

there are the functions modifi ed in each program. This

means μ will be useful, when the functions are not

changed, which not relate the properties of seven subject

programs used in this paper.

Table 5. The results of fi nding λ and TS

program name TS λ

replace 516 0.48

print_token 402 0.44

print_token2 483 0.33

schedule2 297 0.43

schedule 299 0.27

totinfo 346 0.12

tcas 138 0.86

 As shown in Table 6, fi nally, the values of κ are

performed relying on λ. The reason is that λ is varied

on FM and LC. There TC of each program is identifi ed.

In this Step, TC presents that TC = {t
1
, t

2
, t

3
,...t

n
} For

example, in the program namely replace shows that there

133 selected test cases. From the experiments, the test

case numbers 1 to 133 are selected. Some ofthe examples;

t
1
provides Login function,t

2
is for registration, and t

3
is

the method of verifi cation. However, the abilities of the

select test cases are effective for the program, when all

of them are created properly. This may depend on the

design from the programmers at the previous process.

Table 6. The results of fi nding κ and TC

program name TC κ

replace 133 0.03

print_token 120 0.03

print_token2 109 0.03

schedule2 48 0.02

schedule 143 0.06

totinfo 130 0.09

tcas 33 0.04

 The comparative studies used in this paper are

random (RT), regression test selection techniques and

the proposed model.The reason of using RTis becausethe

oldest and simplest methods. Besides this, the RST is

applied as the well-known methods because it gives the

good results for improving the ability ofverifi cation and

validation, while the entire processes are being developed

(16).

 There are five criteria for the evaluations

explained as follows;

 Criteria 1:The amounts of the selected test

cases.

 The results of the comparative studies indicate

that the amount of test case inESM is the smallest as

746 KKU Res. J. 2013; 18(5)

shown in Figure 2. This can guarantee that the ability

of ESM is better than RT and RST through the process

of software testing. In the concept of software testing,

the specialists tried to propose the techniques that can

select the appropriate numbers of test cases as small as

possible. According to this, the small sizes of test cases

can help the programmers to avoid time consuming when

executing the new version.

Figure 2. The size of the selected test case of the seven subject program regarding RT, RST, and ESM

 Criteria 2: The ability of reduction.

 The percent reductions of the comparative

studies are shown in Figure 3. As we can see that the

results of ESM for each subject program are higher than

others. However, the results cannot prove it is the best

technique for reducing the size of the program.

Figure 3. The ability of the reductions

747KKU Res. J. 2013; 18(5)

 Criteria 3:The amounts of the test cases at least

one fault.

 The amounts of the test cases at least one fault

that can be occurred in the new source code, as shown

in Figure 4. For example, the results from RT, RST,

and ESM applying to print-token are 274, 215, and 198

respectively. This explains that the numbers of test cases

by using ESM is the smallest, while only one bug is

found in the program. Come to this point, in summary,

the ability of ESM is a littlebit test caseslower than the

comparative studies.

Figure 4. The amounts of the test cases at least one fault

 Criteria 4: The evaluation of the programmer

of the proposed model is assumed that each programmer

has the same skill, knowledge, and experience. The

reason is that this paper cannot explain some variables in

term of mathematic model. According to the algorithms

designed in this paper can show only some parts of the

relationships.

 Criteria 5: This paper is applicable for the

object-oriented programing such the seven subject

program used in the experiment is created by C

programming.For the future work, the different

programming should be considered.

4. Conclusion

 Programmers in the development software

system more seriously work hard on the process of

software testing. One reason that may fail the entire

software system is the unintended bugs, which can be

occurred after modifying the new program. Moreover,

some functions are modifi ed in the new software version.

This results in the size of source code. According to this,

the lines of code may change that affect the quality of

using test cases, including the size of the program may

increase. Therefore, this paper proposes the selection

methods that cover the issues mentioned above.

Finally, the effective selection technique is created. And

it shows the better results in terms of the smaller size

of test, higher reduction than the comparative studies.

Furthermore, the proposed model also gives the smaller

numbers of test cases, while at least one fault is occurred

in each program. However, there are many techniques

proposed to select the appropriate numbers of the test

cases, e.g., minimization and prioritization techniques. In

fact, there is no best technique to guarantee the minimum

numbers of test cases using in software testing without

any happeningerror. Consequently, in the future works,

the simulation and optimization technique should rely

748 KKU Res. J. 2013; 18(5)

on the concept of case-based reasoning be applied to

thisbecauseit will generate, reuse, revise, and retain the

relevant test cases with the competence preservation.

This refers to the new technique should give the better

result not only the size of test case but include the whole

performance of the software system.

5. Acknowledgement

 This research is supported by the software

engineering laboratory (SEL), Faculty of Science

and Technology, Assumption University, Bangkok,

Thailand.

6. References

(1) Munassar1 NMA, Govardhan A. A Comparison

Between Five Models Of Software Engineering.

IJCSI. 2010; l 7(5): 94-101.

(2) Royce W. Managing the development of

large software systems.Proceedings of IEEE

WESCON;1970 Aug 26; Los Alamitos, CA,

USA; 1970. P.1-9.

(3) Cohen S. A Software System Development

Life Cycle Model for Improved Stakeholders

Communication and Collaboration.International.

Journal of Computers, Communications and

Control. 2010;5(1): 20-24.

(4) Niessink F, Van VH. Software maintenance

from a service perspective. Journal of Software

Maintenance and Evolution : Research and

Practice. 2000;12(1): 103-120.

(5) Musa, J. (1993) Operational profiles in

software reliability engineering. IEEE Software.

1993;10(2):14-32.

(6) Barton J, Czeck E, Segall Z, Siewiorek D.

Fault injection experiments using FIAT. IEEE

Transactions on Computers. 1990; 39(4): 575–582.

(7) Mishra KK, Misra AK. Regression Testing: A

Spectrum-based Approach. Journal of Computer

Applications. 2010; 5(18): 35-42.

(8) Grave TD, Harrold MJ, Kim JM, Porter A,

Rothermel. G. An empirical comparison of

regression test selection techniques. ACM

Transactions on Software Engineering and

Methodology. 2001;10(2): 184-208.

(9) Ostrand T, Balcer M.The category-partition

method for specifying and generating functional

tests.ACM Transactions on Software Engineering

and Methodology. 1988;31(6): 676 – 686.

(10) Rothermel G, Harrold MJ. Empirical studies of

a safe regression test selection technique. IEEE

Transactions on Software Engineering. 1998;

24(6): 401-419.

(11) Munson JC, Khoshgoftaar TM. The detection

of Fault Prone Programs.IEEE Transaction on

Software Engineering. 1992; 18(5): 348-357.

(12) Xie T, Notkin D. Checking inside black box:

Regression testing by comparing value spectra.

IEEE Transaction on Software Engineering.

2005; 31(10): 869-883.

(13) Rothermel G,Harrold MJ. Analyzing regression

test selection techniques.IEEE Transactions on

Software Engineering. 1996; 22(8): 529-551.

(14) Rothermel G,Harrold MJ. Experience with

regression test selection.In International

Workshop for Empirical Studies of Software

Maintenance.1996: 178-188.

(15) Tao C, Li B, Gao J. A Systematic State-Based

Approach to Regression Testing of Component

Software.Journal of Software. 2013; 8(3): 560-571.

(16) Rothermel G,Harrold MJ. A safe, efficient

regression test selection technique. ACM

Transactions on Software Engineering and

Methodology. 1997; 6(2): 173-210.

