for probiotic properties

878

Preliminary characterization of *Lactobacillus salivarius* K7 for probiotic properties

Thanrada Narakaew^{1,2}, Komkhae Pilasombut³, Nualphan Ngamyeesoon⁴* and Adisorn Swetwiwathana⁵

Abstract

Lactobacillus salivarius K7 was isolated from chicken intestine. This strain produced bacteriocins against several gram-positive bacteria. Its inhibitory activities and probiotic properties were performed. Strain survival *in vitro* study was demonstrated in pH range of 2, 2.5, 3 and 3.5, concentrations of ox-bile at 0, 3, 6, 9 and 12%, concentrations of bile salts at 0, 0.3, 0.6 and 1%, and also fresh chicken bile in MRS at 3%. Survival of this strain in gastrointestinal tract model at pH 2, 3, 4 and 7 and cell free supernatant (CFS, pH 4) inhibitory effect on indicator strains was determined. Moreover, antibiotic resistant of this strain was examined. The results showed that *Lb. salivarius* K7 survived in bile salt concentration of 0, 0.3, 0.6 and 1.0% at 9.32, 2.57, 1.18 and 0.46 log cfu/ml, respectively. In addition to pH tolerant, *Lb. salivarius* K7 could be able to grow in culture at pH 2.5, 3 and 3.5 with viable cell count of 2.65, 7.11 and 7.23 log cfu/ml, respectively. Survival of *Lb. salivarius* K7 in 3% fresh chicken bile revealed slightly decreased in cell number from 9.29 to 8.03 log cfu/ml after exposed for 24 h, while this culture could tolerate to ox-bile up to 12%. This strain was completely destroyed in the presence of gastric juice at pH 2, however at pH 3 and 4 this strain survived in gastrointestinal tract model for 180 min. Antibiotic resistance properties tests showed that *Lb. salivarius* K7 resisted to Gentamycin, Kanamycin, Naldixic acid, Neomycin, Norfloxacin, Oxolinic acid, Tetracyclin, Oxytatracyclin and Streptomycin. This study indicated that *Lb. salivarius* K7 could be used as probiotic.

* Corresponding author, e-mail: knnualph@ kmitl.ac.th

¹ Agricultural Biotechnology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

² Centers for Agricultural Biotechnology (AG-BIO/PERDO-CHE) Thailand.

³ Division of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

⁴ Division of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

⁵ Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

บทคัดย่อ

Lactobacillus salivarius K7 แยกได้จากลำไส้ไก่ สามารถสร้างสารแบคเทอริโอซินไปยับยั้งเชื้อแบคทีเรีย แกรมบวกชนิดอื่นๆ หลายชนิด จากคณสมบัติดังกล่าวจึงได้ทำการศึกษาคณสมบัติการเป็นโปรไบโอติกของเชื้อดังกล่าว ้โดยทำการศึกษาในหลอคทคลองถึงการมีชีวิตรอดของเชื้อเมื่ออยู่ในอาหารเลี้ยงเชื้อที่มีค่าความเป็นกรดด่าง 2,2.5,3 และ 3.5 ox-bile ความเข้มข้น 0, 3, 6, 9 และ 12 เปอร์เซ็นต์ bile salts ความเข้มข้น 0, 0.3, 0.6 และ 1 เปอร์เซ็นต์ และน้ำดี ใก่สุดความเข้มข้น 3 เปอร์เซ็นต์ในอาหารเหลว MRS ทุดสอบการมีชีวิตรอดของเชื้อในระบบทางเดินอาหารจำลอง ้ในน้ำย่อยของกระเพาะที่ค่าความเป็นกรดค่าง 2, 3, 4 และ 7 และความสามารถในการยับยั้งเชื้อแบคทีเรียทดสอบ โดย ู้ใช้น้ำเลี้ยงเชื้อส่วนใส (ก่ากวามเป็นกรดค่าง 4) ผลการทดลองพบว่า *Lb. salivarius* K7 มีชีวิตรอดใน bile salts ความ เข้มข้น 0, 0.3, 0.6 และ 1 เปอร์เซ็นต์ โดยมีชีวิตเหลือรอด 9.32, 2.57, 1.18 และ 0.46 log cfu/ml ตามลำดับ สามารถทน และเจริญในอาหารที่มีค่า pH 2.5, 3 และ 3.5 โคยมีจำนวน 2.65, 7.11 และ 7.23 log cfu/ml ตามลำคับ *Lb. salivarius* K7 ้มีจำนวนลดลงเล็กน้อยเมื่อเลี้ยงในอาหารที่มีน้ำดีไก่สด 3 เปอร์เซ็นต์โดยมีจำนวนลดลงจากเชื้อเริ่มต้น 9.29 เหลือ 8.03 log cfu/ml เมื่อเวลาผ่านไป 24 ชั่วโมง ในขณะที่เชื้อสามารถทนใน ox-bile ความเข้มข้น 12 เปอร์เซ็นต์ เชื้อไม่สามารถ ้มีชีวิตรอดเมื่ออยู่ในกระเพาะจำลองที่มีก่ากวามเป็นกรดค่าง 2 อย่างไรก็ตามพบว่า เชื้อสามารถมีชีวิตรอดได้เมื่ออยู่ใน ้กระเพาะจำลองที่มีค่าความเป็นกรคค่าง 3 และ 4 เป็นเวลา 180 นาที การทคสอบความต้านทานต่อยาปฏิชีวนะพบว่า Lb. salivarius K7 สามารถต้ำนทานต่อยาปฏิชีวนะ Gentamycin, Kanamycin, Naldixic acid, Neomycin, Norfloxacin, Oxolinic acid, Tetracyclin, Oxytatracyclin และ Streptomycin การศึกษาในครั้งนี้ชี้ให้เห็นว่าเชื้อ Lb. salivarius K7 สามารถนำไปใช้เป็นโปรไบโอติกได้

<mark>คำสำคัญ:</mark> ระบบทางเดินอาหารจำลอง *Lactobacillus salivarius* โปรไบโอติก **Keywords:** gastrointestinal tract model, *Lactobacillus salivarius*, probiotic.

Introduction

Lactic acid bacteria are regarded as a major group of probiotic bacteria (Collins et al., 1998). The probiotic concept has been defined as a live microorganisms that when administered in adequate amounts confer a health benefit on the host (Guarner et al., 2005). Several beneficial functions have been suggested for probiotic bacteria such as inhibition of intestinal pathogenic bacteria by production of organic acids and pH reduction, prevention of pathogens adherence to the intestinal mucosa, production of bacteriocins and immune stimulation (Vassu et al., 2001). The probiotic bacteria properties must be able to colonize in gastrointestinal tract, survive on low pH of the stomach and bile acids in the intestine, and compete against other microorganisms in the gastrointestinal tract (Erkkilä and Petäjä, 2000). *Lb. salivarius* is a species frequently found in the intestinal tract of various mammals (Slover, 2008). It could produce bacteriocins that inhibited pathogens and could play an important role of the gastrointestinal tract ecology (Robredo and Torres, 2000). *Lb. salivarius* offers promising possibilities as a probiotic, because of their ability to inhibit growth of *Salmonella enteritidis* and *E. coli*, their high adhesion to intestinal mucosal, and their resistance to bile salts and acidic conditions (Garriga et al., 1998). *Lb. salivarius* K7 was isolated from chicken intestine. It produced bacteriocin Abp 118 beta which showed inhibitory activity against *Lb. sakei* subsp. *sakei* JCM 1157^T, *L. mesenteroides* subsp. *mesenteroides* JCM 6124^T and *B. coagulans* JCM 2257^T (Pilasombut et al., 2006). Therefore, the study of *Lb. salivarius* K7 strain properties as probiotic agent was carried on.

Materials and Methods

Bacterial strain and growth conditions

Lb. salivarius K7 was propagated in MRS broth (de Man Rogosa and Sharp; Merck, Germany) at 37°C for 16 hr under anaerobic condition for optimum growth as previous studied (Pilasombut, 2006). List of other bacterial strains, media and their growth condition was shown in Table 1.

Detection of antibacterial activity

The antibacterial activity was carried out by spot-on-lawn method (Ennahar et al., 1999). Cell-free supernatant (CFS, pH 4) was obtained by centrifugation at 4000 x g for 20 min and then sterilized by filter (0.2 μ m, Pall, U.S.A.). Antibacterial activities were test by spotting 10 μ l of CFS onto the surface of agar plate which was overlaid with 5 ml of soft agar (0.8-1% w/v) seeded with 10 μ l of freshly grown indicator strains (about 10⁷ cfu/ml). After overnight incubation at proper temperature as shown in Table 1, inhibition zone was observed.

Determination of acid tolerance

A modified method of Hyronimus et al., (2000) was applied in this study. A suspension of overnight culture of *Lb. salivarius* K7 (2% v/v) was mixed with MRS broth pH 2.0, 2.5, 3.0 and 3.5. After each mixture was incubated at 37° C for 16 hr, viable cell count was determined by plating serial dilution on MRS agar containing 0.5% CaCO₃. These plates were then incubated at 37°C in an anaerobic atmosphere for 48 hr. The survival rate was expressed as the percentage of bacterial cell count (log cfu/ml) at initial compared to those at final after 16 hr incubation. Each experiment was performed in triplicate.

Determination of bile salt and ox-bile tolerance

This test was done by the methods of Walker and Gilliland (1993) with some modification. The overnight culture (2% v/v) was inoculated to MRS broth containing 0, 0.3, 0.6 or 1% (w/v) bile salts (Sigma, New Zealand) and 0, 3, 6, 9 or 12% (w/v) ox-bile (Fluka, Switzerland). The mixtures were incubated at 37° C under anaerobic condition for 16 hr. The procedure of cell count determination was similar to those described for the acid tolerance test. The property of bile tolerance was compared as cell survival percentage of the bacterial count in MRS broth with bile to those without bile after 16 hr incubation. Each experiment was performed in triplicate.

Determination of fresh chicken bile tolerance

The method of Gilliland et al., (1984) with some modification was used to determine fresh chicken bile tolerance. 2% (v/v) of the overnight culture with was inoculated to MRS broth containing 3% fresh chicken bile (w/v). Subsequently, the cultures were incubated at 37°C for 0, 0.5, 1, 1.5, 2, 3, 6 and 24 hr. Growths in control treatment (without bile) and tested culture (3% fresh chicken bile) were monitored by measuring absorbance at 600 nm using a spectrophotometer. Investigation of cell survival was determined as described in the acid tolerance test.

Determination of artificial gastric and intestinal fluids tolerance

Simulated gastric digestion was tested essentially as described in Zárate et al., (2000). Lb. salivarius K7 was inoculated in 100 ml of MRS broth at 2% (v/v) and incubated at 37°C for 16 hr. After washing in sterile saline solution (0.9% NaCl) and centrifugation, the cell suspension was added to 100 ml of artificial gastric juice with the following composition: NaCl 125 mM, KCl 7 mM, NaHCO₃ 45 mM, and pepsin (Fluka, Switzerland) 3 g /l. The final pH was adjusted with HCl solution to pH 2, 3, 4, and 7. The bacterial suspension was agitated at 200 rpm/min to simulate peristalsis. Aliquots were taken for enumeration of viable at 0, 30, 60, 90 and 180 min by spread plate technique with MRS agar containing 0.5% CaCO₂. Simulated intestinal fluid was prepared by suspending the cells (after 180 min of gastric digestion) in 0.1% (w/v) pancreatin (Fluka, Switzerland) and 0.15% (w/v) bile salts (Sigma, New Zealand) in water and adjusted it to pH 8.0 with 1 N NaOH solution. The suspension was incubated as described above and samples for total viable counts were taken at 0, 30, 60, 90 and 180 min using spread plate technique with MRS agar containing 0.5% CaCO₂. The experiment was performed in triplicate and mean were calculated.

Antibiotic resistance test

The antibiotic resistance tests used in this study was done according to the agar disc diffusion method by the National Committee for Clinical Laboratory Standards (NCCLS, 1990). The list of antibiotic (Oxoid, England) used was shown in Table 3. *Lb. salivarius* K7 culture was transferred to 5 ml of MRS broth and incubated at 37°C until turbidity of 0.5 MacFarland standard appeared. The swabs of bacterial suspension were streaked in three directions over entire surface of each agar plate, later different antibiotic discs were placed on agar and anaerobic incubated at 37°C for 16 hr. The diameters of inhibition zones were measured after incubation, and compared with those in interpretative standard chart (NCCLS. 1990). The results were reported as resistance (R), intermediate (I) and susceptible (S).

Results and Discussion

Antimicrobial activity

The study revealed that CFS of *Lb. salivarius* K7 could inhibit *B. coagulans* JCM 2257^T, *B. coagulans* TISTR 1447, *L. innocua* ATCC 33090^T, *Br. campestris* NBRC 11547^T, *A. hydrophila* TISTR 1321 and *S. typhimurium* TISTR 292 (Table 1). Interestingly, it was noticed that this strain showed inhibition against both gram positive and gram negative bacteria.

Lactic acid bacteria (LAB) could produce various antibacterial compounds, such as organic acids, hydrogen peroxide, diacetyl and bacteriocins (Holzapfel and Wood, 1995). These antimicrobial substances could inhibit the growth of other microorganisms (Huot et al., 1996). The result was similar to Pilasombut et al., (2005) who reported that cell free supernatant of isolates J9-2, J6-1, D2-6, D3-9, D1-8, D7-3, D2-8, I4-9, I4-8, C4-4 and C3-3 which were isolated from chicken intestine showed inhibitory activity against *S*. Enteritidis DMST 17368.

Indicator strains	Media	Temperature (°C)	Condition	Antibacterial activity K7
Lactic acid bacteria				
Lactobacillus plantarum ATCC 14917 ^{T}	MRS	30	anaerobic	-
Lactobacillus sakei subsp. sakei JCM	MRS	30	anaerobic	-
1157 ^T				
Lactobacillus sakei TISTR 890	MRS	37	anaerobic	-
Lactococcus cremoris TISTR 1344	MRS	30	anaerobic	-
Leuconostoc mesenteroides	MRS	30	anaerobic	-
subsp. <i>mesenteroides</i> JCM 6124^{T}				
Leuconostoc mesenteroides TISTR 942	MRS	30	anaerobic	-
Enterococcus feacalis JCM 5803 ^T	MRS	37	anaerobic	-
Enterococcus feacalis TISTR 888	MRS	37	anaerobic	-
Streptococcus sp. TISTR 1030	MRS	30	aerobic	-
Other gram positive bacteria				
Bacillus coagulans JCM 2257^{T}	TSB-YE	37	aerobic	+
Bacillus coagulans TISTR 1447	TSB-YE	37	aerobic	+
Listeria innocua ATCC 33090 ^T	TSB-YE	37	aerobic	+
Brochotrix campestris NBRC 11547 ^T	TSB-YE	26	aerobic	+
Staphylococcus aureus TISTR 118	TSB-YE	37	aerobic	-
Other gram negative bacteria				
Pseudomonas fluorescens JCM 5963^{T}	TSB-YE	26	aerobic	-
Pseudomonas fluorescens TISTR 358	TSB-YE	26	aerobic	-
Aeromonas hydrophila TISTR 1321	NB	30	aerobic	+
Salmonella typhimurium TISTR 292	TSB-YE	37	aerobic	+
Escherichia coli TISTR 780	TSB-YE	37	aerobic	-

 Table 1. List of indicator strains, their growth condition and antibacterial activity of Lb. salivarius K7 against indicator strains

ATCC = American Type Culture Collection, Rockville. Md

JCM = Japanese culture of Microorganisms, Wako, Japan

NRBC = National Institute of Technology and Evaluation (NITE) Biological

Resource Center

TISTR	= Thailand Institute of Scientific and Technological Research
K7	= Lb. salivarius K7
TSB-YE	= Tryptic soy broth + 0.6% Yeast extract (Merck, Germany)
NB	= Nutrient broth (Merck, Germany)
MRS	= de man Rogosa and Sharpe (Merck, Germany)
+	= Inhibition zone
-	= Not inhibition

Acid tolerance and bile tolerance

Lb. salivarius K7 was able to withstand in MRS media at pH 2.5, 3 and 3.5 with survival rate at 28.51%, 76.63% and 77.88% respectively (Table 2), whereas, at pH 2 cells could not survive. Moreover, cell also survived in bile salts at 1% and in ox-bile up to 12%. However, increasing of bile salts concentration from 0.3% to 1% resulted in a survival rate decline from 27.58% to 4.94%. On the contrary, increasing of ox-bile concentration from 3% to 12%, the survival rate escalated from 57.80% to 72.19%. Comparisons of Lb. salivarius K7 growth rates at 24 hr in the control and in culture with fresh chicken bile at 3% concentration for also revealed that fresh chicken bile had inhibitory effect with initial cells about 7 log cfu/ml and about 8 log cfu/ml in fresh chicken bile, while 9.29 log cfu/ml in control (Figure 1).

Resistance to pH is of great importance in survival and growth of bacteria in the stomach and thus, is a prerequisite property for probiotics. The pH of the gastric juice in chickens can be as low as 0.5-2.0 (Ehrmann et al., 2002). When the stomach is non-fasting, e.g. after meal, the gastric pH is usually raised up to 3.0 or more (Erkkilä and Petäjä, 2000). In this study, the media with pH 2.0 was used to represent the extreme acid condition of human stomach as in the case of fasting period. The media with pH 3.0 used in this study represented the pH of non-fasting gastric condition. After exposition to various pH values for 16 hr, *Lb. salivarius* K7 did not grow at pH 2.0 and exhibited low viability at pH 2.5. This result differed from Ehrmann et al., (2002) who reported that *Lb. salivarius* TMW 1.992 could survive after incubation at pH 1.0 for 1 hr and incubation period of 4 hr at pH 3.0 and pH 2.0. Jin et al., (1998) reported that the time required for feed to pass through the entire alimentary canal of chicken is as short as 2.5 hr. In addition, Erkkilä and Petäjä, (2000) reported that the time required for feed to pass through the stomachin human was 2-4 hr. Thus, these experiments must be confirmed with long-term viability of their presence in the gastrointestinal tract.

The relevant physiological concentration of human bile was range from 0.3% (Dunne et al., 1999) to 0.5% (Zavaglia et al., 1998). *Lb. salivarius* K7 showed a low survival rate at bile salt concentration up to 1%, while at ox-bile and 3% fresh chicken bile exhibited no effect on viable cell of this strain. Ehrmann et al., (2002) reported that in the presence of 7 mM/l taurocholic acid slightly decrease viable cell of *Lb. salivarius* TMW 1.970 and TMW 1.992 was found. The addition of ox gall (2%), on the other hand, inhibited the growth of both strains of *Lb. salivarius*.

Treatments	Viable cells (log cfu/ml)	Survival rate (%)	
pH value			
control	9.28	100.00	
2.0	0.00	0.00	
2.5	2.65	28.51	
3.0	7.11	76.63	
3.5	7.23	77.88	
Bile salts concentration			
0%	9.32	100.00	
0.3%	2.57	27.58	
0.6%	1.18	12.66	
1.0%	0.46	4.94	
Ox-bile concentration			
0%	9.17	100.00	
3%	5.30	57.80	
6%	6.30	68.70	
9%	6.82	74.37	
12%	6.62	72.19	

Table 2.	Survival of Lb. salivarius K7 grown in MRS at 37 °C for 16 hr under various pH, concentrate	ion of bile
	salts and ox-bile	

Figure 1. Viability of *Lb. salivarius* K7 in the presence of fresh chicken bile 3%

 log cfu K7 control
 =
 viable cell count (log cfu/ml) of *Lb. salivarius* K7 in control group

 log cfu K7 bile
 =
 viable cell count (log cfu/ml) of *Lb. salivarius* K7 in 3% fresh chicken bile

Artificial gastric and intestinal fluids tolerance

The study of *Lb. salivarius* K7 survival in artificial gastric at pH 2, 3, 4, and 7 was demonstrated. The outcome at pH 2 showed no survival after 30 min of exposure. On the other hand, at pH 3, 4 and 7 a viability of *Lb. salivarius* K7 decreased according to prolonged exposure to 180 min (Figure 2). Moreover, the tolerance of this strain against intestinal fluids showed that a viability of *Lb. salivarius* K7 decreased during 180 min incubation (Figure 2).

Survival of microorganisms in the gastrointestinal conditions represents one of the most important criteria for selecting lactic acid bacteria

as probiotic. *In vivo*, it is expected that successive digestions exert a stronger effect than either of these alone (Zárate et al., 2000). In this study, both acid and bile stresses were assayed in a sequential way, also simulating the gastrointestinal movement. The result was similar to Gänzle et al., (1999) who reported that *Lb. curvatus* was rapidly killed in the gastric compartment at pH 2.0. Zárate et al., (2000) found that propionibacteria survived at pH 4 in gastric and intestinal digestion, and only *P. acidipropionici* Q4 was sensitive to digestion at pH 3. At pH 2, viable cell counts decreased rapidly during the gastric trail.

simulated gastric (0-180 min) and simulated intestinal fluid (180-360 min)

Figure 2. Viability of *Lb. salivarius* K7 in the presence of simulated gastric juice pH 2, 3, 4 and 7 (0-180 min) and simulated intestinal fluid (180-360 min)

Antibiotic resistance

The results in Table 3 revealed that *Lb. salivarius* K7 was resisted to gentamycin, kanamycin, nalidixic acid, neomycin, norfloxacin, oxolinic acid, tetracyclin, oxytatracyclin and streptomycin. However, this strain

was susceptible to ampicillins, cephalothin, erythomycin, nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and amoxycillin.

Antibiotics used in this study were commonly used in human medicines and in farming practice.

886

Antibiotic resistance of probiotics was conducted with purpose of examining their ability to survive if they were taken simultaneously with an antibiotic therapy. The result was similar to D'Aimmo, Modesto and Biavati, (2007) that *Lb. acidophilus, Lb. casei, Lb. delbrueckii* subsp. *bulgaricus* were susceptible to ampicillin G, rifampicin and resisted to aztreonam, cycloserin, kanamycin, nalidixic acid, polymycin B and spectinomycin.

Antibiotic tested	Disk content	Antimicrobial	usceptibility	
Annoione tested	(µg)	Clear zone diameter (mm)	Acceptable inhibitory	
Ampicillins	10	25	S	
Chloramphenicol	30	16	Ι	
Cephalothin	30	28	S	
Erythomycin	15	26	S	
Gentamycin	10	8	R	
Kanamycin	30	0	R	
Nalidixic acid	30	0	R	
Neomycin	30	9	R	
Nitrofurantoin	300	26	S	
Norfloxacin	10	0	R	
Novobiocin	5	15	Ι	
Oxolinic acid	2	0	R	
Tetracyclin	30	8	R	
Sulfamethoxazole/	25/1.5	16	S	
Trimethoprim				
Oxytetracyclin	30	8	R	
Penicillin G	10	28	S	
Amoxycillin	10	26	S	
Streptomycin	10	0	R	

Table 3. A	ntimicrobial	susceptibility	of Lb.	salivarius K7
------------	--------------	----------------	--------	---------------

S = Susceptible: the infection may respond to the treatment at the normal dosage.

I = Intermediate: the result is equivocal and if the bacterium is not fully susceptible to an alternative drug, then the test should be repeated.

R = Resistant: the bacterium is not inhibited by the usually achievable systemic concentrations of the antimicrobial agent and efficacy has not been reliable in clinical studies.

Conclusion

Lb. salivarius K7 was the strain that exhibited acid and bile tolerant as well as strong inhibition of some pathogens and resistance to a wide range of clinical important antibiotics. The result from this study suggested that this bacteriocin producer strain could potentially be applied as probiotic starter for fermented meat products.

Acknowledgements

This research was partially supported by i) Center for Agricultural Biotechnology, Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education. ii) Meat Technology Research Network Center, King Mongkut's Institute of Technology Ladkrabang on corresponding between King Mongkut's Institute of Technology Ladkrabang and the Thailand Research Fund.

References

- Collins, J.K., Thornton, G. and Sullivan, G.O. 1998. Selection of probiotic strains for human applications. **International Dairy Journal** 8: 487-490.
- D'Aimmo, M.R., Modesto, M. and Biavati, B. 2007. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. Isolated from dairy and pharmaceutical products. **International Journal of Food Microbiology** 115: 35-42.
- Dunne, C., Murphy, L., Flyin, S., O'Halloran, S., Feeney, M., Morrisey, D., Thorton, G., Fitzgerald, G., Daly, C., Kiely, B., Quigley, E.M.M., O'Sullivan, G.C., Shanahan, F.

and Collins, K. 1999. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trails. **Antonie van Leeuwenhoek** 76: 279-292.

- Ehrmann, M.A., Kurzak, P., Bauer, J. and Vogel, R.F. 2002. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. Journal of Applied Microbiology 92: 966-975.
- Ennahar, S., Sashihara, T., Sonomoto, K. and Ishizaki, A. 1999. Investigation of bacteriocin production and purification from Nukadoko isolates displaying antimicrobial activity. Japanese Journal of Lactic Acid Bacteria 10: 29-36.
- Erkkilä, S. and Petäjä, E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. **Meat Science** 55: 297-300.
- Gänzle, M.G., Hertel, C., van der Vossen, J.M.B.M. and Hammes, WP. 1999. Effect of bacteriocinproducing lactobacilli on the survival of *Escherichia coli* and *Listeria* in a dynamic model of the stomach and the small intestine. International Journal of Food Microbiology 48: 21-35.
- Garriga, M., Pascual, M., Monfort, J.M. and Hugas, M. 1998. Selection of lactobacilli for chicken probiotic adjuncts. Journal of Applied Microbiology 84: 125-132.
- Gilliland, S.E., Stanley, T.E. and Bush, L.J. 1984. Importance of bile tolerance of *Lactobacillus acidophilus* used as a dietary adjunct. **Journal of Dairy Science** 67(12): 3045-3051.
- Guarner, F., Perdigon, G., Corthier, G., Salminen, S., Koletzko, B. and Morelli, L. 2005. Should yoghurt cultures be considered probiotic.

British Journal of Nutrition 93: 783-786.

- Holzapfel, W.H. and Wood, B.J.B. 1995. Lactic acid bacteria in contemporary perspective. Pp 1-6.
 In B.J.B. Wood and W.H. Holzapfel (eds), The Lactic Acid Bacteria. Blackie Academic & Professional, London.
- Huot, E., Meghrous, J.C., Barrena-Gonzalez, G. and Petitdemange, H. 1996. Bacteriocin J46, a new bacteriocin produced by *Lactococcus lactis* subsp. *cremoris* J46: isolation and characterization of the protein and its gene. Anaerobe 2: 137-145.
- Hyronimus, B., Marrec, C.L., Sassi, A.H. and Deschamps, A. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology 61: 193-197.
- Jin, L.Z., Ho, Y.W., Abdullah, N. and Jalaludin, S. 1998. Acid and bile tolerance of *Lactobacillus* isolated from chicken intestine. Letters in Applied Microbiology 27: 183-185.
- National Committee for Clinical Laboratory Studies. 1990. Method for antimicrobial susceptibility testing of anaerobic bacteria. Second edition. NCCLS document M11-T2. Villanova, PA 19085, USA.
- Pilasombut, K., Tanjak, P. and Nitisinprasert, S. 2005.
 Screening lactic acid bacteria isolated from chicken intestine for use as probiotic. Eihght
 Symposium on Lactic Acid Bacteria.
 Abstracts.
- Pilasombut, K. 2006. Purification and characterization of bacteriocins by *Lactobacillus salivarius* K4 and K7 isolated from chicken intestine.
 Ph.D. Thesis. Kasetsart University. Bangkok. Thailand.

- Pilasombut, K., Sakpuaram, T., Wajjwalku, Nitisinprasert, S., Swetwiwathana, A., Zendo, T., Fujita, K., Nakayama, J. and Sonomoto, K. 2006. Purification and amino acid sequence of a bacteriocin produced by *Lactobacillus salivarius* K7 isolated from chicken intestine. Songklanakarin Journal of Science and Technology 28(Suppl. 1): 121-132.
- Robredo, B. and Torres, C. 2000. Bacteriocin production by *Lactobacillus salivarius* of animal origin. Journal of Clinical Microbiology 38(9): 3908-3909.
- Vassu, T., Smarandache, D., Stoica, I., Sasarman, E., Fologea, D., Musat, F., Csutak, O., Nohit, A.M., Iftime, O. and Gherasim, R. 2001. Biochemical and genetic characterization of *Lactobacillus plantarum* cmgb-1 strain used as probiotic. Roum Biotechnol Lett 7: 585-598.
- Walker, D.K. and Gilliland, S.E. 1993. Relationships among bile tolerance, bile salt deconjugation and assimilation of cholesterol by *Lactobacillus acidophilus*. Journal of Dairy Science 76(4): 956-961.
- Slover, CM. 2008. Lactobacillus: a review. Clinical Microbiology Newsletter 30(4): 23-27.
- Zárate, G., Chaia, A.P., González, S. and Oliver, G. 2000. Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. Journal of Food Protection 63(9): 1214-1221.
- Zavaglia, A.G., Kociubinsky, G., Pérez, P. and de Antoni, G. 1998. Isolation and characterization of *Bifidobacterium* strains for probiotic formulation. Journal of Food Protection 67(7): 865-873.