
366 KKU  Res. J. 2012;  17(3)

Multi Objective Evolutionary Algorithms for Pipe Network Design 
and Rehabilitation: Comparative Study on Large and Small Scale 
Problems 

Krit Sriworamas 1*, Sujin Bureerat2and Thaveesak Vangpaisal3

1  Ph.D. Candidate, Department of Civil Engineering, Ubonratchathani University, THAILAND, 34190 
2  Department of Mechanical Engineering, Khon Kaen University, THAILAND, 40002
3  Department of Civil Engineering, Ubonratchathani University, THAILAND, 34190 
* Correspondent author: kritubu@gmail.com

Received April 24, 2012
Accepted June 1, 2012

Abstract

 This paper deals with comparative search performance of a number of well-established multiobjective 

evolutionary algorithms on water distribution network design. Evolutionary methods include strength Pareto 

evolutionary algorithm (SPEA), non-dominated sorting genetic algorithm (NSGA), Pareto archived evolution 

strategy (PAES), population-based incremental learning (PBIL) and particle swarm optimisation (PSO). The 

optimisation methods, with the use of binary and real codes resulting in eight optimisation strategies, are implemented 

on two problems of pipe network design and rehabilitation. The multiobjective optimisation problems are classifi ed 

as being large- or small-scale based on  number of design variables. Design objectives are minimising cost and 

increasing network resilience of the network whereas discrete design variables are pipe diameters. The obtained 

numerical results  using  various optimisation strategies are compared and discussed. By utilising pareto frontier 

and hypervolume values in performance test, for the large-scale problem RNSGA and RSPEA are the fi rst and the 

second best respectively.  However, in the small-scale problem, RMPSO is the best while RNSGA is the second. 

Hence, the evolutionary algorithm that gives the best overall results for both large- and small- scale problems is 

RNSGA while the second best methods are RMPSO and RSPEA. The BPBIL method is suitable for small-scale 

problems. The binary-code versions of NSGA, SPEA and PAES are totally outperformed by their real-code 

counterparts. 
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1. Introduction

 Practical engineering design problems are 

usually assigned to fi nd the best solution of design 

variables that result in optimum design objectives and 

feasible design constraints. Recently, multiobjective 

evolutionary algorithms (MOEAs) (1) have been 

developed as multiobjective optimisers. Initially,  

well-known methods were  vector evaluation genetic 

algorithm (VEGA) (2), multiobjective genetic algorithm 

(MOGA) (3), non-dominated sorting genetic algorithm 

(NSGA) (4), Pareto archived evolution strategy (PAES) 

(5-6) and strength Pareto evolutionary algorithm 

(SPEA) (7). Since then, numerous new algorithms 

have been developed e.g. multiobjective population-

based incremental learning (PBIL) (8) including the 

upgrade of  some previously mentioned methods such as 

NSGAII (9) and SPEA2 (10). One of the most popular 

techniques is a multiobjective particle swarm optimiser 

(MPSO) (11), which is a population-based method 

using real design variables. Some work on comparing 

their performance has been done e.g. in references 

(12) and (13). Various comparative performance of 

evolutionary algorithm studies lead to the conclusion 

that the performance of evolutionary algorithms depends 

on the type of optimisation problem. For example, 

crossover-based methods are effective to be used with 

global optimisation (8) while mutation-based methods 

are very useful for solving a large-scale topology 

optimisation (14). Therefore, the benchmarks of MOEAs 

performance for every type of optimisation problem 

should be defi ned. Moreover, a development of new 

approaches, improvement of the existing algorithms, 

and implementation of these methods on real world 

applications are still greatly challenging.

 The work in this paper covers the implementation 

of the established MOEAs i.e. PAES, NSGAII, 

SPEA2, PBIL and PSO using binary and real codes 

(designated as B and R respectively) on the design 

and rehabilitation of a water distribution network. 

The current pipe network of Yasothorn city centre in 

Thailand is chosen for a numerical experiment. The 

design problems are optimising the network cost and 

network resilience to meet predefi ned constraints.  Using 

the above mentioned criteria as bi-objective functions 

in the numerical experiment, pipe network effi ciencies 

were investigated in terms of cost and reliability. The 

network cost was determined from length and diameter 

of pipes of the network while the network resilience was 

obtained in term of pressure power balance to overcome 

the friction at the demand points. Design variables, 

which are discrete, consist of selected pipe diameters. 

The multiobjective problems can be classifi ed as being 

large-, and small-scale depending on the number of 

design variables.

 

2. Materials and Methods

 Piping or a water distribution network is one 

of the most important engineering systems in daily life. 

A study of network models is formulated in a system 

of mixed linear and nonlinear equations with term 

of discharge being the unknown parameters. In this 

work, the software EPANET was employed for this 

pipe network analysis. The optimisation process can 

be achieved by interfacing EPANET into MATLAB 

since the optimisation codes had been developed in 

the MATLAB environment. The diagram of function 

evaluations is shown in Figure 1. In practice, pipe 

network design is accomplished by taking into account 

of economic, safety, maintenance and public health 

considerations. The common design criteria include 

the network cost, the network reliability, total head 

loss in pipes, pressure in pipes, water quality, network 
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infrastructure etc. The optimisation process is not only 

applied to the design of a new network but also used in 

the rehabilitation of the existing network. A particular 

multiobjective design problem of a pipe network can be 

written as

            (1)

Subject to

 where x is the vector size N×1 of discrete 

design variables

  f
i
 are the objective functions

 V
i 
are pipe velocities are allowable velocities 

(set to be 1.5 m/s)

 H
i 
denote hydraulic gradients in the pipes

 and are allowable hydraulic gradients (set 

to be 10 m).

Figure 1. EPANET and MATLAB interface

 Two objective functions were chosen for this 

numerical experiment consisting of network cost and 

network resilience.  The cost minimisation is more or 

less taken into consideration for any engineering system. 

The network resilience, presented in (15) was claimed to 

be a good measure of network reliability which should 

be maximised.

 A chosen water distribution network was the 

city centre of Yasothorn province in Thailand (shown 

in Figure 2). The network consisted of one tank and 426 

pipes with 337 junctions. Two sets of design variables 

were:
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Figure 2.  Water distribution network of Yasothorn province, Thailand

functioned as the design objectives. The set of pipe 

diameters and their prices are similar to those used in 

(15) with some modifi cation as detailed in Table 1 along 

with their integer representation. As a result, it can be 

concluded that the rounded-off design variables are 

round(x) ∈ I N where I = {1, 2,…, 12}. Multiobjective 

is assigned to minimise the cost of pipes and maximise 

the resilience. Note that, sets of design variables and 

objective function sets, F11 stands for the optimisation 

problem using the DSV1 and F21 stands for the 

optimisation problem using the DSV2.

 DSV1: 422 pipe diameters. All of the pipes 

excluding the 4 main pipes are selected

 DSV2: 40   pipe diameters, the selected pipes 

are located in the sub-region as shown in Figure 4. 

 The main network, namely DSV1, is the main 

network while DSV2 is the small network merged 

within the main network DSV1. The efficiency of 

DSV1 is always maintained while DSV2 which is the 

rehabilitation network can be modifi ed. Even though a 

small change has been made, the re-design of the whole 

network still has to be employed for the system to be 
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Table 1. Integer encoding, pipe diameters and prices

Integer Diameter 

(mm)

Price 

($/m)

1 25 2

2 50 5

3 75 8

4 100 11

5 150 16

6 200 23

7 250 32

8 300 50

9 350 60

10 400 90

11 450 130

12 500 170

 All the optimisation methods addressed in the 

previous section were implemented on the proposed 

multi-objective design problems. The non-dominated 

sorting concept for constrained optimisation proposed in 

(16) was used to handle design constraints. The number 

of generation, the population size, and the external 

archive size used for the design problem are given in 

Table 2. 

Table 2. Numbers of loops and population size

Design 

problem

No. of 

generation

Population 

size

External 

archive 

size

F11 250 200 200

F21 100 100 100

 

 For the Pareto archive evolution strategy, the 

(μ+λ)-PAES version in (6) which is adapted from the 

(1+1)-PAES was used. For the optimisation strategy that 

uses binary code, a pipe diameter value was encoded as 

10 bits of a binary string. The lower and upper bounds 

are ai = 1 and bi = 12 respectively. The probabilities 

of crossover and mutation for NSGA and SPEA are 

1.0 and 0.5 respectively. For each testing problem, the 

optimisation methods used the same initial population. 

Each method was employed to solve each problem 

over 6 runs while on each operation the non-dominated 

solutions of the fi nal iteration were taken as the optimal 

front. The performance assessment was reasonably 

similar to the work presented in (12). The performance 

tests in this study were using the Pareto frontier and 

hypervolume (HV) value (17) which is one of the best 

performance indicators in MOEAs comparison. Note 

that the hypervolume indicated the distribution of the 

solutions lined in the frontier. A higher HV means a 

larger distance between a frontier and a reference point. 

The frontier with highest HV is the best. In the whole 

testing the ranking of HV value was shown for each 

problem. Results were discussed and concluded for the 

best of MOEA.

3. Results and Discussion

 There are totally 8x6x2 non-dominated fronts 

from the 6 runs of the 8 multiobjective evolutionary 

optimisers used for solving the 2 design problems. 

The illustration and comparison of the fi rst numerical 

experiment are shown in Figures 3-5. Figure 3 displays 

the plots of approximate Pareto fronts of F11 obtained 

from various optimisers. The fronts are rather contiguous. 

Network resilience is multiplied by -1 before plotting so 

that it is viewed as minimisation, and simple in observing 

and comparing. The zoom-in of the rectangle region in 
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Figure 3 is presented in Figure 4. The fronts of RNSGA 

and BPBIL were the best. Most of the non-dominated 

fronts were better than the original network with the 

exception of the front from BNSGA and BSPEA.

Figure 3. Approximated Pareto fronts of F11 obtained from the various MOEAs

Figure 4. Zoom-in of Figure 3



372 KKU  Res. J. 2012;  17(3)

Figure 5. Approximated Pareto fronts of F21 obtained from various MOEAs 

 For the large-scale cases, Figure 5 demonstrates 

plots of non-dominated fronts of F21 obtained from the 

various optimisers. The fronts are non-contiguous.The 

front of RMPSO is the best while the second best is the 

front obtained from RNSGA. Only the best approximate 

Pareto front, which is obtained from using RMPSO, is 

not dominated by the original network. From Figures 3-5, 

it is shown that RNSGA, RMPSO and RSPEA provide 

the best distributed and extended fronts.

 Tables 3 and 4 list the ranking of HV-values 

and ranking for both cases of study. These tables also 

pose HV values of MOEA methods. The method with 

higher value of HV is better. Ranking by HV of each 

method is related to ranking by Pareto in section 2 

except for RSPEA and BPBIL. However, the HV values 

of RSPEA and BPBIL methods are very close to each 

other. Therefore, similarly to pareto, HV value can be 

used for indicating a performance of the method.

Table 3. HV-values and ranking for a large-scale 

 problem (F11)

MOEAs HV for F11 Ranking

RNSGA 0.901 1

RSPEA 0.852 2

BPBIL 0.839 3

RMPSO 0.719 4

RPAES 0.632 5

BPAES 0.608 6

BNSGA 0.296 7

BSPEA 0.085 8
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Table 4.  HV-values and ranking for small-scale 

 problem (F21)

MOEAs HV for F21 Ranking

RMPSO 0.953 1

RNSGA 0.928 2

RSPEA 0.878 3

RPAES 0.420 4

BPAES 0.311 5

BPBIL 0.236 6

BNSGA 0.081 7

BSPEA 0.057 8

 At this stage, the using of Hypervolume 

concept can give more detailed in MOEAs performance 

tests than using pareto frontier consideration. However, 

the both methods lead to a suitable discussion and 

conclusion in this study.

4. Conclusion

 Based on several comparative studies, it can 

be concluded that most of the employed multiobjective 

evolutionary algorithms are  powerful tools for 

dealing with the design and rehabilitation problems of 

water distribution networks especially the real-code 

evolutionary algorithms. The non-dominated sorting 

scheme for constrained multiobjective optimisation in 

(16) can effectively deal with the assigned constraints. 

All of the optimisation strategies can deal with 

both large- and small- scale design problems. The 

evolutionary algorithm that gives the best overall results 

for both large- and small- scale problems is RNSGA 

while the second best methods are RMPSO and RSPEA. 

The BPBIL method is suitable for the small-scale 

problem which is the best method among the binary-code 

algorithms. The binary-code versions of NSGA, SPEA 

and PAES are totally outperformed by their real-code 

counterparts. This can be fairly concluded that the real 

code crossover and mutation operators are effi cient in 

exploring a Pareto front of water distribution network 

design problems.
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