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Abstract

We have implemented a computer program that solved semiconductor device equations using

the finite element method. A set of three coupled equations, (i) Poissonûs equation, (ii) electron continuity

equation, and (iii) hole continuity equation were solved iteratively using Gummelûs method. The numerical

method used was based on the Galerkin finite element scheme. Upon finding the solutions, the algorithm

provided us with important information relevant to semiconductor devices such as electric field, potential,

and carrier concentration within the device. In addition, I-V characteristic for the semiconductor device could

be calculated. We simulated a representative case: p-n junction diode. The results were in good agreement

with previously published studies by De Mari.
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Here, we briefly explain the notations used

throughout this article.

electrostatic potential

electronic charge (1.602x10-19c)

permittivity of the material which is equal

to the product of the dielectric constant

(ε
r
) and the permittivity of free space

(ε
o
= 8.854x10-12F/m)

net impurity density which is equal to the

difference between the donor impurity density

(N
D
) and the acceptor impurity density (N

A
)

Introduction

Semiconductor device simulation is the

study of semiconductor devices such as p-n junctions,

as shown in Figure 1, using numerical techniques

and a simplified model. In addition to providing

useful information about the I-V characteristics which

is pertinent to the analysis of the behavior of the

devices in electronic circuits, semiconductor device

simulation also gives detailed information about how

electrical potential, electric field, and charge carrier

densities are distributed inside the physical devices.

dimensional frameworks.

The purpose of this paper is to study

the steady state one-dimensional p-n junction using

the finite element method and compare our results

with the results from De Mari. De Mari(1968) used

the finite difference method and assumed (i)

the absence of recombination in the interior of the

device [G(x) = 0], (ii) an abrupt asymmetric impurity

distribution, (iii) constant mobilities, and (iv) infinite

recombination contacts (De Mari, 1968).

Theory and related words

Basic semiconductor device equations

A typical theoretical modeling of

semiconductor devices begins with five governing

equations. The explicit forms of these equations are

given as follows, (Snowden, 1988).

Figure 1.  The p-n junction model in one dimension.

A typical theoretical modeling of

semiconductor devices begins with five governing

equations arising from five physical characters of

the devices: 1) Poissonûs equation, 2-3) current densities

of electrons and holes due to drift (electric field)

and diffusion (concentration gradient), 4-5) continuity

equations for electrons and holes.

In solving the system of equations, we

need to resort to numerical methods in order to find

the approximate solutions. Finite element is a

numerical method of choice because it is suited for

solving differential equations with complex geometries

and boundary conditions. Even though the physical

system we are pursuing as a case-study in this work,

is merely a one-dimensional problem, initially

implementing the finite element early on will provide

us a firm ground for further development to 2 and 3

(1)

(2)

(3)

(4)

(5)



189KKU Res J 15 (3) : March 2010 »÷°…“·∫∫®”≈Õß√Õ¬μàÕæ’‡ÕÁπ∑’Ë ∂“π–§ßμ—«Àπ÷Ëß¡‘μ‘¥â«¬√–‡∫’¬∫«‘∏’‰ø‰πμå‡Õ≈‘‡¡πμå

electron density

hole density

electron current density

hole current density

electron mobility

hole mobility

electron diffusion coefficient

hole diffusion coefficient

generation and recombination rate

Upon writing the five governing equations,

instead of using the SI units, it is convenient to recast

the physical quantities involved into ones whose units

are dimensionless (De Mari, 1968). The normalization

factors are listed in Table 1. The unit conversions have

the key advantage that the physical quantities involved

in the same equation have roughly the same order of

magnitude, preventing the numerical problems which might

occur due to round-off error when using a finite number

of bits in the computer storage to represent a real number.

If we limit the scope of our study to a steady state in one-dimension, the five semiconductor device

equations simplify to the following,

Table 1. List of normalization factors for the quantities of interest.

(6)

(7)

(8)

(9)

(10)
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The purpose of this study is to solve the system of

non-linear coupled equations using the finite element

method. However, in order to allow rigorous

comparison between the numerical results given by

De Mari (1968)which uses the finite different method

and our calculations, we use the p-n junction with

the exact same physical dimension and properties

described in De Mari (1968) as our model. The physical

parameters of the p-n junction are listed below.

Material: Germanium

ε
r
 = 16, n

i
 = 2.5 Ó 1019 m-3

Temperature: T = 300 K
Doping:

n-side; C(x) = N
D
 = 2.5 Ó 1023 m-3

p-side; -C(x) = N
A
 = 2.5 Ó 1021 m-3

Length:

n-side; L
n
 = 0.2 Ó 10-6 m

p-side; L
p
 = 1.4 Ó 10-6 m (for forward bias)

L
p
 = 3.0 Ó 10-6 m  (for reverse bias)

Carrier mobilities:

electron; μ
n 
= 3600 Ó 10-4,

hole; μ
p 
= 1700

 
Ó 10-4

Furthermore, in solving the differential

equations, it is necessary to specify the boundary

conditions. If we discretize the one dimension p-n

junction into M nodes, with index  (m = 0) signifying
the first node, and the index  (m = M -1) denoting
the last node as shown in Figure 1, these two nodes

represent the boundary of the p-n junction model.

m2

V . secm2

V . sec

where  V
A
 potential is positive in the case of forward bias, and is negative in the case of reverse bias.
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Computational details

Applying the Finite Element Method

We solve the system of equations using

a finite element scheme, following the notation given

by Reddy (1945). Here, we briefly describe to

implementation; although the detailed methodology

is provided in the original authorûs work (Reddy,

1945). The entire one dimensional model is divided

into elements denoted byΩ
e
, where x

e
 and x

b

represent the beginning position and the ending

position of each element accordingly. A set of many

elements, called a mesh, forms the entire space of

interest as shown in Figure 2.

where  n is the number of nodes within the elements;

and the shape function  L
i
(e) (x) is defined by

Figure 2. (a) Entire one dimensional model

(b) division into a set of elements

We begin by approximating the solutions,    , n
and  p in the eth element according to

(11)

(12)

(13)

(14)

The set of coefficients a
ki
 are chosen in such a way

that the shape function L
i
(e) (x) assumes the value

1 at the ith node while it vanishes at the other

nodes. Hence, the coefficients a
ki
 can be determined

using an inverse of the matrix shown.

(15)

Then, instead of using the physical

coordinate where each element begins at x = x
a

and ends at x = x
b 
, we perform a coordinate

transformation into the so-called çnatural coordinateé

denoted by ξ where each element begins exactly at

ξ = −1 and ends at ξ = +1.

Figure 3. Boundary of each element in three

different coordinate systems: global

coordinate(x), local coordinate(x), and

natural coordinate(ξ).

The coordinate transformation from the global

coordinate into the natural coordinate (i.e. x = x
a

→ ξ = - 1 and x = x
b
 → ξ =+1) can be done by

assuming a linear mapping equation,

-
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where a and b are constants that satisfy

the transformation condition given previously.

In other words,

Here x
a
 is the position where the element begins

in global coordinate, and dL(e) is the length of

the element. In a similar fashion as in Cartesian

coordinate, the shape function can also be written

in natural coordinates

Hence,  a and b  can be determined according to,

Substituting a and b into the mapping equation yields,

with the usual properties

where ξ
j
 is the position of the jth node in the element.

Table 2. Forms of the shape functions in natural coordinates.

Very often the finite element method requires an

evaluation of the integration of a function F (x)
such as ∫  F(x)dx. In transforming to natural

coordinate, the integration assumes much simpler

limits of integration.

where, J
e
 is called the Jacobian of the transformation;

and it can be determined according to
xb

xa

In addition, the small displacement d
x
 in the global

coordinate is related to the infinitesimal displacement

dξ 
 in natural coordinates as follows

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Therefore, we have obtained a very useful

mathematical identity for transforming an integral

over a range x
a
 → x

b
 in the global coordinate into

the natural coordinates as follows,

(24)

(25)
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Before we proceed directly to solve the set

of semiconductor device equations given in Equation

(6)- Equation(10), we need to rewrite Poissonûs

equation into the form suggested by Gummel (1964).

This mathematical technique is necessary for practical

implementation because Poissonûs equation in its

usual form often leads to very slowly converging

calculation due to its non-linear character.

Consider a typical scheme for solving

a non-linear coupled system of equations as shown

in Figure 4. We begin by giving an initial guess

of the electric potential {    
m

(k)} at each node, so

that the continuity equation for electron and hole

can be initially solved, giving the approximate value

for {n
m
} and {p

m
}. These two pieces of information

are used to repeat the entire cycle by solving Poisson

equation, yielding again the electric potential

{  
m

(k+1)}. The calculations are done iteratively

until the electric potential {   
m

(k+1)} converges to

a final solution.

As mentioned previously, without proper

treatment of Poissonûs equation using Gummelûs

method (1964), the convergence becomes extremely

slow. Here we briefly review Gummelûs method

(1964) for the completeness of the discussion,

but the detailed analysis will be omitted. Suppose

the iterative cycle has proceeded to the kth cycle,

then the Poissonûs equation for the next cycle

is typically of the form

The idea behind this scheme is that if the iteration

is to be considered as already convergent, the deviation

δ   has to diminish. If it is not yet converged

however, then  we need to find the value  of δ
in order to find    (k+1). In a similar fashion for the

electric potential, write,

Gummel suggested that the electric potential be written as

(26)

(27)

The next step is to try to write δn and δp as

function of δ   , which Gummel suggested to be

Substituting Equation (27), (28), and (29) into Equation and

canceling δ     from both sides of the equation yields

The above equation is essentially a Poisson equation,

modified by Gummel so that it becomes suitable for

solving iteratively. To avoid confusion, we will refer

to Equation (30) as the çModified Poissonûs Equationé.

1. Modified Poissonûs Equation

If the exact values for electric potential

    (x), the electron density n(x), and the hole density
p(x) were known, both sides of the Equation (30)

would be exactly equal. However, due to the approximate

characters of these quantities, both sides are different

by a certain amount, typically called the çResidualé.

Define the residual R
1

(28)

(29)

(30)

(31)
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where    , n, and p  denote the approximate electric

potential, electron density, and hole density

accordingly. Realizing that the smaller the residual

the more accurate the approximation becomes, the

Galergin finite element method demands that the

integral over the entire domain of the residual

weighted by the shape functions must be zero. In

other words,

(32)

Substituting Equation (31) into Equation (32) yields

(33)

Consider the integration by parts of the first term on the left hand side

As we impose the continuity condition of the electric field,                                           and boundary

condition, the first terms cancel, leaving the final result for the finite element equation as follows,

The equations in the integral form must then be converted to a system of  linear equations. Here, the ith

equation can be written as

where

(35)

2. Electron Continuity Equation

From Equation (9), we can define

residual (R
2
)

(36)

According to the Galerkin finite element method,

the integral over the entire domain of the residual

weighted by the shape functions must vanish.

In other words,

(37)

˜ ˜ ˜
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The integrand contains two terms. Integrating

by parts yields terms of the types

                which are

guaranteed to vanish because of the continuity of

the current density at the element boundary. Therefore,

the finite element equation is

Substituting the hole current density in Equation

(8) into Equation (40) gives

(38)

Substituting the expression for electron current density

from Equation (7) into Equation (38) gives

which must be converted into a system of n linear

equations. Here, the ith equation is given can

be written as

where

(39)

3. Hole Continuity Equation

In the same manner as the electron

continuity equation, we can write the hole continuity

equation into its Galerkin finite element form using

Equation (10)

(40)

(41)

which must be converted into a system of n linear

equations. Here, the ith equation can be written as

(42)

where

Finally, we have transformed the five governing

equations into the Galerkin finite element scheme as

shown in Equations(35), (39) and (42), which can be

expressed in matrix form as follows,

(43)

(44)

(45)

We then proceed to evaluate the elements of

the matrices [p (e)], [M (e)], and [Q(e)], and

the elements of the vectors {B(e)}, and {G(e)}
for every elements  in the mesh. Solving the system

of linear equations in matrix form as shown previously

yields the electric potential {    (e)}, electron density

[n (e)], and hole density [p (e)] accordingly.
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Results and discussion

In this work, we studied the p-n junction

using the finite element method for three cases of

applied voltage: 0, 4, and 22 (in normalized units).

The computational methods explained previously were

implemented in C programming language. Specific

parameters for each case such as the number of

cycles, and maximum error of the electric potential

as compared to the De Mariûs (1968) result were

listed in Table 3. In addition, we used the following

parameters for all cases.

Figure 4.  Flowchart of the calculation.
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The number of elements = 600

The number of nodes in an element = 2

cut-off |    m
(k) −    m

(k+1)| for convergence
criteria = 1 Ó 10-6

Figures 5, and 6 illustrates the case where

no voltage is applied (no bias). Specifically, Figure

5 shows how the electric potential    (x) distributes
over the internal region of the device. Note

the rapid increase of    (x) near the interface

between the n-type and the p-type, signifying the

relatively larger electric field at the region. In the

case where no bias is applied, the potential difference

between both sides of the electrode is equal to

the built-in potential given in Table 3. Figures 6(a)

and 6(b) shows the charge carrier densities in linear

scales and in semi-logarithmic scales respectively.

Note how the electron accumulates in the n-type

region, whereas the holes density is larger at

the p-type region, consistent with widely accepted

characteristics of a typical p-n junction diode.

Figures 7 and 8 are the calculated electric

potential and charge carrier densities with the applied

voltage equal to 4 in the dimensionless units.

In addition, the results reported by De Mari ( 1968)

are also plotted on the same graphs for comparison,

showing satisfactory agreements.

Figures 9 and 10 are similar to the previous

sets, except for the applied voltage being equal to

22 units. The comparisons with the De Mari (1968)

results are also satisfactory in this case, giving much

confident that our implementation using the finite

element method is correct.

The agreement shown in these cases provides

a solid ground when applying our implementation

to study other p-n junction diodes or even a simple

model for a one-dimensional transistor. In doing so,

we only have to adjust the doping profile C (x),
the device dimensions, or boundary condition, while

leaving the internal structure of the computational

method unchanged (i.e. using the same computer

program).

In addition to the electric potential   (x),
electron density n(x), and hole density p(x), I-V
characteristics of a semiconductor device are also

very useful information because the I-V curve of the

device determines its behavior in electronic circuits.

Figure 11 shows the current densities as a function

of applied voltage which can be interpreted as

the I-V characteristic of the p-n junction, where J
denotes the total current density, and J

p
 is the hole

current density.

Conclusion

We have implemented a computer program

that solves semiconductor device equations using

the finite element method. A set of three coupled

equations: (i) Poissonûs equation, (ii) electron

continuity equation, and (iii) hole continuity equation;

were solved iteratively using Gummelûs method.

The numerical method used was based on the Galerkin

finite element scheme. Upon finding the solutions,

Table 3. Numerical parameters for the three case studies.

Applied Voltage Number of iterations Max. error of potential Difference potential

0 9 1.933E-008 13.816 (Built-in potential)

4 4 1.139E-007 9.816

22 34 7.468E-007 8.184
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the algorithm provided us with important information

relevant to semiconductor devices such as electric

field, potential, and carrier concentration within

the device. In addition, I-V characteristics for

the semiconductor device could be calculated.

We simulated a representative case: p-n junction

diode. The results were in good agreement with

previously published studies by De Mari.
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Figure 5.  Electrostatic potential as a function of position in no-bias case.

Figure 6.Mobile carrier densities as function of position in no-bias case (a) linear scales (b) semilogarithmic scales.

Figure 7. Comparison between the electric potential     (x) in this work (dotted-line) and in De Mariûs work (solid-line).
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Figure 8. Mobile carrier densities as functions of position when applied voltage is 4 (in dimensionless units)

(a) linear scales (b) semi-logarithmic scales.

Figure 9.  Electric potential    (x) under 22 (in dimensionless units) applied voltage.
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Figure 10. Electron density and hole density under 22 applied voltage (a) linear scales (b) semi-logarithmic scales.

Figure 11. Current densities as a function of applied voltage. J denotes the total current density and J
p

is the hole current density.


