
445KKU Res J 13 (4) : May 2008

Abstract
The hit-or-miss transformation (HMT), a binary matching between an image and a structuring

element, is a morphological operator. It has become a useful tool for shape detection. However, the HMT
processing time is too expensive in real applications. To use this technique for real-time processing requires
high computational processor. The graphics processing unit (GPU) is designed to draw images or graphics
scenes on the computer screens. GPUs have been rapidly developed to respond to the demand for rendering in
realistic game applications. However, modern GPUs are programmable in offering the capability to execute the
user's code. Due to their high performance and programmability, general purpose computation on GPUs has
become a new research field. In this paper, we present an efficient HMT implementation using a GPU. We
compare the execution time of this GPU implementation with that of CPU implementation. Our proposed
GPU-based HMT perform faster than the CPU-based HMT. This GPU-based HMT can help in speeding up
several real-time image processing applications including the defect detection in hard disk drive industrials.

Navadon Khunlertgit1, Nipon Theera-Umpon2* and Sansanee Auephanwiriyakul1

1Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Thailand
2Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Thailand
*corresponding author; e-mail: nipon@ieee.org; phone:663944140; fax:6653221485

Introduction
The graphics processing unit (GPU) is a

processing unit designed for accelerating graphics
pipeline operations, such as real-time rendering in
game applications. The demands from the markets
of these applications have been massively driving
the development of GPUs. Therefore, GPUs have
been developed to be the processors with high speed
and computational capabilities. They have an
explicitly parallel programming model which is similar
to the Single Instruction, Multiple Data (SIMD).

Their performance continues to increase as the
transistor counts increase. The latest GPUs have
become programmable, granting users to execute their
functions. According to this programmability, we can
use a GPU not only for traditional graphics applications
but also for general-purpose applications. This new
generation of GPUs has brought us to the new field
of research known as General Purpose computation
on GPU or GPGPU (GPGPU, 2005; Pharr and
Fernando, 2005).

Presented in 1st Data Storage Technology Conference (DST-CON 2008)

Hit-or-miss Transformation Implementation on
Graphics Processing Unit

446 วารสารวิจัย มข. 13 (4) : พฤษภาคม 2551

The original task of the GPU is for graphics
operations. To program GPU in general purpose is
complicated for the programmers because of the
differences in available resources, implemented
features, and versions of specialized graphics.
Consequently, there are some efforts to make
general-purpose programming easier by making a
supportive environment. One such environment that
is commonly used is BrookGPU (Buck et al.,
2004;Trancoso and Charalambous, 2005;
Charalambous et al., 2005). Brook is an extension
for C to support the GPGPU. It is a good approach
for porting an application.

Several general-purpose applications have
been ported to the GPU in many areas such as the
Fuzzy C-Means (FCM) algorithm (Hong and Wang,
2004), as well as image processing applications
which include Level Set (LS) algorithm (Hong and
, 2004), Generalized Distance Transforms (GDT) and
Skeletons (Strzodka and Telea, 2004), Image
Filtering (Sugita et al., 2003; Fialka and Cadik,
2006), etc. All of them have already been shown to
perform faster than CPU applications. Furthermore,
there are many other research works reporting
experiences in accelerating the execution on the
GPGPU (GPGPU,2005;Owens et al., 2005).
Trancoso and Charalambous showed that the GPGPU
was suitable for more computational intensity
applications. Their work presented that the GPGPU
can also be used as a low-cost alternative architecture
for high-performance computing (Trancoso and
Charalambous, 2005).

Our proposed research focuses on another
intensive computation which is widely used in
image processing applications namely the Hit-or-
miss transformation (HMT). The HMT is a well-known

morphological template matching technique
introduced by Serra (1982). Its objective is to
locate known objects in an image. It has obvious
applications in computer vision and image analysis.
It is also useful for defect detection in many industrial
fields. There are many research works that apply the
HMT as a primary tool for shape detection (Zhao
and Daut, 1991; Khosravi and Schafer, 1996),
However, the HMT is seldom used in real-time pro-
cessing. This is because its processing time is too
expensive. For this reason, using the HMT in real
applications requires a high computational processor.

According to the SIMD capability of the GPU
we mentioned earlier, it makes the GPU suitable for
running image processing tasks, which usually
involve similar calculations operating on an entire
image. Therefore, we investigate the possibility of
the HMT implementation on the GPGPU. The
performance of the GPU-based HMT is also
compared to that of the CPU-based.

The rest of this paper is organized as follows.
Section II presents a background of the GPU, along
with its programming environments. Section III shows
a brief description of the HMT and the description
of the proposed GPU-based HMT implementation.
The experiments and the results are shown in
Section IV. Finally the conclusions of this paper are
presented in Section V.

Graphics Processing Unit
A. Architecture

The original purpose of the GPU is for the
rendering process which computes pixels on screen
by projecting 3-D coordinate objects. It offers a large
degree of parallelism for accelerate this computation.

447Hit-or-miss Transformation Implementation on
Graphics Processing Unit

KKU Res J 13 (4) : May 2008

Its model is similar to the Single Instruction,
Multiple Data (SIMD). Therefore, the GPU is naturally
suitable for highly data-parallel computations.

The general GPU is consisted of 2 different
types of processing units: vertex processors and pixel
(or fragment) processors. The vertex processor
performs mathematical operations that transform a
vertex into a screen position. The pixel or fragment
processor, also known as pixel shader, performs the
texturing operations.

Figure 1 shows a diagram of a GPU pipeline.
The vertex processors transform 3-D triangles into
2-D triangles by projecting their vertices onto the
screen. Then, these 2-D triangles are rasterized into
fragments for input to the fragment processors.
Finally, the fragment processors determine the color
of pixels.
B. Programming Environment

Programming GPU in a high-level language
is recently developed to offer GPU programmability.
At first, the high-level language environments were
developed for graphics operation such as Cg from
NVIDIA, and OpenGL Shading Language. Although
they are helpful for graphics applications, still they
are not trivial to be using by general-purpose
applications. Therefore, some researchers develop
high-level language environments for general-purpose
programming. The environment that we use in this
research is BrookGPU from Standford University
(Buck et al., 2004).

Brook abstracts the GPU as a stream processor.
It is an extension of C that contains new stream
variables and a new key word that indicates certain
functions as kernels. The stream is a data collection
which can be operated in parallel. The kernel is a
special function that is applied to the elements of the

input streams to produce each element of the output
streams. Brook compiles kernels into Cg code and
generates C++ code to connect to the kernels. Brook
runtime allows the users to select the processor to
execute their code depending on the value of the
Brook additional environment variable namely
BRT_RUNTIME.

Figure 1. GPU pipeline architecture.

GPU-based HMT Implementation
The hit-or-miss transformation (HMT) is

the result of the intersection of two morphological
erosion operators defined as

A⊗ B = (AΘX)∩[ACΘ(W - X)]

where A is a binary image, AC is the complement of
A, X is an object from the structuring element B,
and W-X is a background containing the structuring
element B. AΘB is the morphological erosion of the
image A by the structuring element B, where
XΘY = {z : Y + z ⊆ X}.

Hit-or-miss Transformation Implementation on
Graphics Processing Unit

448 วารสารวิจัย มข. 13 (4) : พฤษภาคม 2551

The HMT like any other morphological
operators has loop codes for indexing each pixel in
both input image and structuring element. Each pixel
in the input image does not change during the
procedure. Accordingly, there are no dependencies
in the data access in the loop. To get the effectiveness
in porting to the GPGPU, we must transform loop
into vectorizable which can be operated in parallel.

In our implementation, we convert the
indexing loop which is used to index pixel in the
input image into vectorizable. Then we extract it and
replace by a kernel function. Before the kernel call,
we have to set the array of the input image into the
input stream. Then, after the kernel call, we also
have to set the output stream back to array of the
output image.

It should be noted that the application of the
proposed GPU-based HMT may be limited by the
GPU limitations such as the size of the stream, the
number of parameters, etc. However, there is a
research that analyzed these limitations and proposed
the solution (Trancoso and Charalambous, 2005).

Experimental Results
A. Template Matching Results Using GPU-based
HMT

We have implemented the GPU-based HMT
to process large size images to speed up the execution
time. As shown in Figure 2, for example, the
1024x1024 input image that contains disks with
different diameters of 5 to 10 pixels. We apply our
proposed GPU-based HMT to locate all disks with
diameter of 5 pixels. The original image and the
resulting image that shows the location of all
5-pixel diameter disks are shown in Figure 2(a) and
2(b), respectively. The crosses in Figure 2(b)

Figure 2. GPU-based HMT in template matching.

indicate the locations of 5-pixel diameter disks
achieved by the HMT. Because the input image is
the synthetic one that we generate with the prior
knowledge of all disk locations, we can check whether
the output image is correct. We found that it is
completely correct which implies that the proposed
GPU-based HMT is implemented correctly.

(b) Result from GPU-based HMT indicating locations of
5-pixel diameter disks.

(a) Input image.

449Hit-or-miss Transformation Implementation on
Graphics Processing Unit

KKU Res J 13 (4) : May 2008

B. Computation Performance
The advantage of the proposed GPU-based

HMT is to reduce the execution time. We perform a
quantitative performance comparison between the
GPU-based HMT and CPU-based HMT by using
test images with various sizes. The sizes of the test
images are 256x256, 512x512, and 1024x1024.
The test platform is a 2.41GHz Dual-core AMD
Athlon processor, 1GB RAM, and NVIDIA GeForce
8500GT 256MB at PCI-E. The chart in Figure 3
shows the ratios of the computation times of the CPU-
based HMT and the proposed GPU-based HMT. We
can see that the execution by the GPU is faster than
that by the CPU for all cases. We observe that when
the input image size increases, the proposed GPU-
based HMT can be performed faster by the larger
ratio. It can run faster by 44 times when the input
image size is 1024x1024.

Figure 3. Computation performance comparison of
GPU-based HMT and CPU-based HMT
for different sizes of images.

Conclusions
In this paper, we present the implementation

to perform the hit-or-miss transformation (HMT)
on the GPU. The results show that the HMT can be
properly implemented on the GPU. The results also
show that the proposed GPU-based HMT
implementation is faster than the CPU-based
implementation. When the size of an input image is
bigger, the ratio of the processing times of the CPU-
based HMT implementation to that of the GPU-based
HMT implementation is even larger. That means the
proposed GPU-based HMT provides more speedup
over the CPU-based HMT when the input image is
bigger. This result makes the GPU-based HMT an
alternative approach to implement the HMT in
real-time.

The GPU can potentially be adapted to
implement many other algorithms that require
considerable computation such as shape detection
from a real-time video scene. As the development
of the GPU still depends on realistic graphics appli-
cations, the GPU performance will be improved. That
will open an opportunity to more applications that
may not be implemented with the current technology.
In the future, we plan to continually extend our work
to the gray-scale images and then apply to real
applications.

Acknowledgment
This work was supported by the Hard Disk

Drive Institute (HDDI) and the National Electronics
and Computer Technology Center (NECTEC). We
would like to thank Lanna Thai Electronic Components
(LTEC) Ltd. for the valuable information and
thankful cooperation during this research.

Hit-or-miss Transformation Implementation on
Graphics Processing Unit

450 วารสารวิจัย มข. 13 (4) : พฤษภาคม 2551

References
Buck, I., Foley, T., Horn, D., Sugerman, J.,

Fatahalian, K., Houston, M., and Hanrahan,
P., 2004. “Brook for GPUs: Stream
Computing on Graphics Hardware,” ACM
Transactions on Graphics, pp. 777-786.

Charalambous, M., Trancoso, P., and Stamatakis,
A., 2005. “Initial Experiences Porting a
Bioinformatics Application to a Graphics
Processor,” The 10th Panhellenic Conference
in Informatics, pp.415-425.

Fialka O. and Cadik M., 2006. “FFT and Convolu-
tion Performance in Image Filtering on GPU,”
Conference on Information Visualization, pp.
609-614.

“GPGPU, General purpose computation using graphics
hardware,” 2005; http://www.gpgpu.org/.

Harris, C. and Haines, K. 2005. “Iterative Solutions
using Programmable Graphics Processing
Units,” The 14th IEEE International
Conference on Fuzzy Systems, pp. 12-18.

Hong, J. Y. and Wang, M. D. 2004. “High Speed
Processing of Biomedical Images Using
Programmable GPU,” The 2004 International
Conference on Image Processing, pp.2455-
2458.

Khosravi, M.and Schafer, R.W. 1996. “Template
matching based on a grayscale hit-or-miss
transform,” IEEE Transactions on Image
Processing, pp.1060-1066.

Owens, J. D., Luebke, D., Govindaraju, N., Harris,
M., Kruge,r J., Lefohn, A. E. and Purcell, T.
J. 2005.”A Survey of General-Purpose
Computation on Graphics Hardware,”
Eurographics, pp.21-51.

Pharr, M.and Fernando, R. 2005.GPU Gems 2
Programming Techniques for High Performance
Graphics and General-Purpose Computation,
Addison Wesley.

Trancoso, P. and Charalambous, M. 2005.
“Exploring Graphics Processor Performance
for General Purpose Applications,” The 8th
Euromicro Symposium on Digital System
Design, Architectures, Methods and Tools,
pp. 306-313.

Serra, J. 1982.Image Analysis and Mathematical
Morphology, New York: Academic Press.

Strzodka, R. and Telea, A.2004. “Generalized
Distance Transforms and skeletons in graphics
hardware,” EG/IEEE TCVG Symposium on
Visualization, pages 221–230.

Sugita, K., Naemura, T., and Harashima, H. 2003.
“Performance Evaluation of Programmable
Graphics Hardware for Image Filtering and
Stereo Matching,” ACM symposium on
Virtual Reality Software and Technology,
pp.176-183.

Zhao, D. and Daut, D.G. 1991. “Shape recognition
using morphological transformations,” 1991
International Conference on Acoustics,
Speech, and Signal Processing, pp.2565-
2568 .

